- Что значит линейно увеличивается
- 2. График линейной зависимости.
- В чем отличие линейной и нелинейной зависимости? Что это такое? Приведите пожалуйста банальный пример
- Линейное увеличение
- Содержание
- Увеличение простой линзы
- Увеличение съёмочного объектива
- Увеличение телескопической оптической системы
- Увеличение лупы, окуляра
- Увеличение микроскопа
- Примечания
- См. также
- Ссылки
- Полезное
- Смотреть что такое «Линейное увеличение» в других словарях:
- линейное изменение
- Тематики
- Смотреть что такое «линейное изменение» в других словарях:
Что значит линейно увеличивается
Задача. Пионерский отряд отправился из города в поход. Сейчас он находится в
5 км от города и идёт со скоростью 3 км в час. На каком расстоянии от города он будет через х часов?
Решение. За х часов отряд пройдет километров, Да ещё ранее он прошёл 5 км. Значит, через х часов расстояние от города будет равно
километрам. Обозначив это расстояние через у, будем иметь;
Это равенство выражает зависимость пути от времени, но это уже не будет прямо пропорциональная зависимость, как легко видеть из следующей таблицы
Отношение пути ко времени здесь не равно одному и тому же числу.
Определение. Зависимость между двумя величинами х и у, выражающаяся формулой где к и
— числа, называется линейной зависимостью.
В частности, если то
Значит, прямо пропорциональная зависимость является частным случаем линейной зависимости.
2. График линейной зависимости.
Построим график какой-либо данной линейной зависимости; положим, например,
Поступим следующим образом. Построим сначала график зависимости
Это будет прямая, проходящая через начало координат (черт. 26).
Посмотрим, как будут расположены относительно этой прямой точки графика линейной зависимости:
Составим, например, такую таблицу значений х и у:
Мы видим, что при любой абсциссе ордината точки второго графика на 3 единицы больше ординаты точки первого графика. Значит, и соответствующая точка второго графика будет на 3 единицы выше точки первого.
Построив эти точки, получим прямую, параллельную первой прямой (черт. 26).
Графиком линейной зависимости является прямая.
Отсюда следует, что для построения графика линейной зависимости достаточно найти две его точки.
Покажем это на рассмотренном примере
Положив получим
. Итак, одну точку
мы нашли. Положив ещё
получим
Вторая точка (2; 7). Построив эти точки и проведя через них прямую, получим искомый график, то есть график линейной зависимости, выраженной формулой
Обычно для построения графика линейной зависимости берут две точки, в которых прямая пересекает оси координат. Так, полагая получим
Полагая
получим
Проведя прямую через точки
получим искомый график (черт. 27).
Источник
В чем отличие линейной и нелинейной зависимости? Что это такое? Приведите пожалуйста банальный пример
Если зависимость линейная, то равные изменения аргумента приводят к равным изменениям функции. Иначе зависимость нелинейная.
Пример линейной: y(x) = 5*x + 7.
Зависимость длины пружины от массы подвешенного груза.
Пример нелинейной: y(x) = sin(x).
Зависимость напряжения в розетке от времени.
Самые древние нелинейности из тех, что людьми замечены — это, наверное, площади. И массы.
Участок 100 на 100 метров, к примеру. Имеет площадь в 10 000 квадратных метров.
Увеличишь линейные размеры участка в два раза. 200 на 200 метров. Ан площадь-то увеличилась не линейно, отнюдь не в 2 раза. А вчетверо: 40 000 квадратных метров стала. А это важно, потому как урожай — он с площади собирается. А не с ширины или с длины.
С массами ещё хуже. Возьмешь кубик золота. С длиной ребра в ширину перста, скажем. И весит тот кубик пол-мины. Возьмешь кубик в 2 раза больше по размерам. Взвесишь — ан он уже не на мину тянет. И не на две. А на все четыре. В 8 раз, стало быть, тяжелее будет.
Кубиками золото не мерили, конечно. Но сии нелинейности от формы не зависят. Всё равно понимали, что ежели монета в два раза больше (при той же толщине) — то по весу она вчетверо тяжелее будет. А ежели она ещё и по толщине в два раза больше — значит ценного металла в ней будет в восемь раз больше, и никак иначе.
Вот и крутись, как знаешь. Держи ухо востро — а то прогоришь! Но предки в основном не прогорали.
Значит, понимали нелинейности.
Источник
Линейное увеличение
Увеличе́ние, опти́ческое увеличе́ние — отношение линейных или угловых размеров изображения и предмета.
Лине́йное увеличе́ние, попере́чное увеличе́ние — отношение длины сформированного оптической системой изображения отрезка, перпендикулярного оси оптической системы, к длине самого отрезка. При идентичных направлениях отрезка и его изображения говорят о положительном линейном увеличении, противоположные направления означают оборачивание изображения и отрицательное линейное увеличение.
Масшта́б изображе́ния, масштаб макросъёмки — абсолютная величина поперечного увеличения.
Продо́льное увеличе́ние — отношение длины достаточно малого отрезка, лежащего на оси оптической системы в пространстве изображений к длине сопряжённого с ним отрезка в пространстве предметов.
Углово́е увеличе́ние — отношение тангенса угла наклона луча, вышедшего из оптической системы в пространство изображений, к тангенсу угла наклона сопряжённого ему луча в пространстве предметов.
Ви́димое увеличе́ние — одна из важнейших характеристик оптических наблюдательных приборов (биноклей, зрительных труб, луп, микроскопов и т. д.). Численно равно отношению углового размера наблюдаемого через прибор оптического изображения предмета к угловому размеру этого же предмета, но при наблюдении невооружённым глазом.
Также применяется отдельно к окуляру как части наблюдательной оптической системы.
Также применяется к произвольным оптическим системам.
Содержание
Увеличение простой линзы
Увеличение съёмочного объектива
Увеличение телескопической оптической системы
В телескопческих системах видимое увеличение равно отношению фокусных расстояний объектива и окуляра, а при наличии оборачивающей системы это отношение следует дополнительно умножить на линейное увеличение оборачивающей системы.
Увеличение лупы, окуляра
Видимое увеличение лупы равно отношению расстояния наилучшего зрения (250 мм) к её фокусному расстоянию.
Увеличение микроскопа
Примечания
См. также
Ссылки
- Видимое увеличение // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
- Линейное увеличение // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
- Продольное увеличение // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
- Угловое увеличение // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
- БСЭ Статья «Увеличение оптическое»
Увеличение — к максимуму • Уменьшение — к минимуму • | |
---|---|
Прочее |