Мощность множества. Конечные и бесконечные множества
Мощность (кардинальное число) множества — такое свойство множества, которое остается после абстрагирования от качества (состава) его элементов (определение мощности по Кантору). Мощность множества А обозначается | А | или gard A.
Любые два множества А и В называются равномощными (эквивалентными), если между их элементами может быть установлено взаимно однозначное соответствие, т.е. существует взаимно однозначная функция f: A → B с областью определения А и множеством (областью) значений В. Таким образом, можно сказать, что мощность – это то общее, что есть у всех эквивалентных множеств. Понятие мощности введено Кантором для количественного сравнения различных множеств. С точки зрения правил сравнения (выявления общего), все множества делятся на конечные и бесконечные. В свою очередь бесконечные множества делятся на счетные и континуальные .
Конечное множество – множество, содержащее конечное число элементов; мощность n-элементного множества А равна числу его элементов, т.е. | А | = n; множество, не содержащее ни одного элемента, называется пустым множеством и обозначается Æ; пустое множество является подмножеством любого множества и имеет нулевую мощность (| Æ | = 0). Из определения конечного множества следует – любые два конечные множества с одинаковым (равным) числом элементов эквивалентны (между ними легко установить взаимно однозначное соответствие – для этого достаточно, например, ввести нумерацию элементов).
Одна из особенностей конечного множества заключается в том, что его всегда можно задать путем перечисления элементов. Ясно, что это не всегда удобно (когда число элементов велико), но довольно часто другие способы просто неприемлемы. Последнее относится, например, к ситуации, когда нужно описать подмножество студентов, объединенных в определенную группу (поток). Очевидно, в этом случае придумать какое-то свойство или порождающую функцию, позволяющие однозначно выделить группу студентов из всего множества студентов вуза (факультета), практически невозможно (да в этом и нет необходимости – достаточно составить список студентов).
Бесконечное множество — всякое множество А, имеющееправильную часть В, равномощную всему ( целому ) множеству А , т. е. В Ì А и |В| = |А|. Так, например, множество М квадратов натуральных чисел является правильной частью всего множества N натуральных чисел (взаимно однозначное соответствие между этими множествами очевидно); следовательно, оба эти множества обладают одинаковой мощностью и подпадают под определение бесконечных множеств. В то же время это определение не подходит к конечным множествам, так как мощность (число элементов) правильной части любого конечного множества всегда меньше мощности полного множества.
Счетное множество — любое бесконечное множество, равномощное множеству N натуральных чисел. Мощность счетного множества принято обозначать (алеф — нуль). Отличительная особенность счетного множества – все его элементы могут быть пронумерованы. И хотя любое конечное множество также обладает этой особенностью, оно, по определению, к счетным множествам не относится. Примеры часто встречающихся счетных множеств: любые бесконечные подмножества множества N натуральных чисел; множества целых и рациональных чисел и их бесконечные подмножества (одним из таких подмножеств является, в частности, множество N );
множества, составленные из элементов бесконечных числовых последовательностей как функций натурального аргумента (если эти множества после исключения одинаковых элементов не трансформируются в конечные ).
Замечание. С возможностью нумерации элементов счетного множества связан тот факт, что довольно часто такого рода множества описываются посредством перечисления элементов. Это характерно, например, при задании (описании) бесконечных числовых последовательностей и рядов, когда по записанным нескольким первым членам последовательности (ряда) видна закономерность их изменения и, как следствие, запись последующих членов с помощью выявленной закономерности не вызывает затруднений. Простейшей иллюстрацией к вышесказанному могут служить применяемые на практике описания множеств натуральных и целых чисел, а именно:
Континуальное множество — любое бесконечное множество, равномощное множеству R действительных чисел. Говорят, что всякое континуальное множество имеет мощность континуума. Такой мощностью обладают, например:
множество всех подмножеств всякого счетного множества;
множество точек, принадлежащих некоторой прямой или поверхности;
множество всех действительных чисел некоторого интервала ( a,b ) или отрезка [ a,b ] (см. пример1.2).
В отличие от счетного множества,элементы континуального множества не могут быть пронумерованы, т.е. множество-континуум несчетно. Справедливость данного утверждения подтверждается теоремой Кантора, одно из доказательств которой представлено ниже.
Теорема Кантора. Множество действительных чисел отрезка [0,1] несчетно.
→ Докажем теорему методом от противного. Для этого предположим, что множество счетно, т.е. может быть пронумеровано. Расположим все числа, изображенные бесконечными десятичными дробями, в порядке их нумерации:
Рассмотрим любую бесконечную дробь , у которой
. Эта дробь не может войти в указанную последовательность, так как от первого числа она отличается первой цифрой, от второго — второй цифрой и т.д.
Геометрическая интерпретация множеств. Для геометрического (графического) изображения множеств и их свойств (связей между ними) довольно часто используются так называемые диаграммы Эйлера-Венна, представляющие собой в общем случае некоторый прямоугольник на плоскости и вложенные в него круги.
Так, если в рамках конкретно решаемой задачи рассматривается некая система S = <A,B,C,…,G>частных множеств, то кругами (круги Эйлера), находящимися внутри прямоугольника, изображаются любые множества из S, а прямоугольником — некоторое фиксированное универсальное множество (множество-универсум) U, включающее в себя в качестве подмножеств всю систему S частных множеств, т.е.
» МÎ S : M Ì U. При этом каждое множество мыслится как множество точек, принадлежащих изображающему его кругу Эйлера.
Замечание. Ясно, что множество-универсум U должно быть либо задано, либо очевидно из контекста задачи. Так, для S = <A, B, С >, где
в качестве универсального множества можно использовать как весь латинский алфавит, так и множество U = <a,b,c,d,e,f,g>. Круги, иллюстрирующие множества А и В на рисунке, пересекаются, так как эти множества имеют общие элементы.
Источник
Счётные и несчётные множества — понятие, свойства и примеры
Разнообразие бесконечностей
Бесконечные множества содержат неограниченную последовательность элементов, объединенных общим признаком. Самые часто используемые из них в математике:
- N — натуральные числа. Содержит все целые положительные номера.
- Z — целые числа. Содержит в себе все положительные и отрицательные значения, а также нуль.
- Q — рациональные числа. Оно включает в себя все суммы, которые можно представить в виде дроби, где в числителе и знаменателе будут целые числа.
- I — иррациональные числа. Оно включает в себя все действительные значения, которые нельзя представить в виде дроби с целым числителем и знаменателем (пример: е, пи).
- R — действительные числа. Включает в себя все точки числовой прямой.
Все они бесконечны, вовсе не означает, что они равномощны.
Сравнение и отображение
Числа в математике можно сравнивать друг с другом и выяснять, какое из них больше. С множествами можно производить аналогичные действия. Это будет называться их отображение друг в друга. Оно может быть дизъюнктивно, конъюнктивно и биективно. Это аналог числовых понятий «больше», «меньше» и «равно». Для того чтобы разобраться, как происходит это сравнение, нужно понятие подмножества.
Подмножеством некоторого набора компонентов называется любая часть компонентов этого набора. То есть, совокупность состоящее из чисел 1 и 3 является подмножеством множества чисел 1, 3 и 5. А они оба, в свою очередь, являются подмножествами совокупности нечётных чисел и т. д.
Если каждому компоненту множества A можно сопоставить какой-то элемент подмножества совокупности В, то отображение А в В конъюнктивно или А меньше, чем В. Если при этом нельзя найти в наборе А подмножество, которое можно сопоставить с совокупностью В, то отображение В в А дизъюнктивно. Если же каждому компоненту из комплекса А можно сопоставить элемент из совокупности В и каждому компоненту из набора В можно сопоставить элемент из совокупности А, то эти множества отображаются друг в друге биективно. В таком случае говорят, что они эквивалентны.
Для сравнения совокупностей можно использовать их мощность. Если мощность А меньше мощности В, то и множество А меньше, чем В. Если мощности равны, то сами наборы элементов эквивалентны.
Сопоставление наборов элементов
Казалось бы, используя свойства сравнения наборов элементов, можно найти соотношение мощностей бесконечных совокупностей. Ведь очевидно, что множество N является подмножеством совокупности Z, они оба являются подмножеством Q, а множества Q и I вместе составляют R. И отсюда, по определению, следует, что мощности соотносятся так: |N| |I|, и загадкой остается только соотношение совокупностей Q и I. Но всё не так просто.
Выяснение размера бесконечного комплекса компонентов — такая же задача, как определение размера конечной совокупности — пересчёт компонентов. Возможность посчитать и пронумеровать элементы бесконечной совокупности называется счётностью. Совокупность натуральных чисел — счётная. Элементам в этом случае легко присвоить порядковые номера. И все множества, которые эквивалентны N, тоже будут счётными. Его размер |N| = a.
Z включает в себя N, а ещё все отрицательные числа и нуль. Но можно ли пересчитать и упорядочить его элементы? Легко: 0, 1, -1, 2, -2, 3 и т. д. То есть Z тоже счётно и эквивалентно N. Но уж Q точно должно быть более мощным, оно включает с себя ещё дробные числа. Но и их можно пронумеровать. Для этого надо представить матрицу: по горизонтали целые числа — значения числителя, а по вертикали — натуральные числа (значения знаменателя). Порядок следующий: 0, 1, -1, ½, -½, 2, -2, 1/3, -1/3, 3, -3, ¼, -¼… То есть Q равномощно N и тоже счётно.
Но если взять R, то его элементы пронумеровать не получится. Ведь между любыми двумя точками, а прямой всегда можно поставить ещё одну. То есть, совокупность R «бесконечна вглубь»: каждый промежуток между бесконечным количеством точек содержит в себе бесконечное количество точек. Значит, свойство R — несчётность. Такие «бесконечные вглубь» множества называют континуальными. И их мощность обозначается как |R| = c.
Ещё одно важное свойство бесконечных множеств заключается в том, что если из бесконечной совокупности удалить (или добавить к ней) подмножество меньшей мощности, то размер исходной совокупности сохранится. Если из N убрать все числа от 1 до 10, то его мощность не уменьшится на 10, а останется прежней. Множество останется бесконечным и счётным: a — 10 = a.
Поскольку N отображается в R конъюнктивно (N является подмножеством R, но не имеет подмножества эквивалентного R), то |R|=c > a=|N|. А так как R представляет собой объединение совокупностей Q и I, то размер |I| = |R| — |Q| = c — a = c. Значит, I тоже континуально.
Бесконечная мощность счётных и несчётных множеств может быть описана тремя формулами. Это два равенства и одно неравенство:
Совокупность всех точек интервала или отрезка на прямой тоже будет континуальна, так как на неё можно спроецировать всю совокупность точек действительной прямой R.
Соотношение мощностей
Континуальное множество больше счётного. Но какова их разница? Чтобы это вычислить, потребуется понятие булеан.
Что такое булеан
Есть некий набор компонентов V. Булеаном V будет называться комплекс всех его подмножеств. Как будут соотноситься размер булеана и самого V? Если V состоит из одного элемента, то его булеан будет состоять из двух элементов: пустого набора компонентов и самого V. Если V состоит из двух элементов, то булеан содержит 4 элемента: пустое множество, V и каждый из двух элементов. Если V содержит 3 элемента, то булеан содержит 8: пустое, само V, каждый из трёх его элементов в отдельности и каждую пару элементов (которых тоже три).
То есть мощность булеана — это 2 в степени размера самого V. Булеан так и записывается 2^|V|. Размер булеана всегда будет больше, чем мощность самой совокупности.
Результат сопоставления
Размер булеана любой счётной совокупности будет 2^a. Если рассматривать N, то его булеан будет состоять из пустоты, бесконечного числа элементов N, бесконечного числа пар элементов, бессчётного числа сочетаний элементов по 3, 4, 5 и так до бесконечности. Какому известному множеству можно сопоставить этот булеан?
Так как это N — натуральные числа, то каждый элемент булеана — это последовательность чисел. Если представить каждую такую последовательность в виде знаков после запятой в десятичной дроби, то получатся координаты точек в интервале от 0 до 1, который эквивалентен R. Так как булеан N содержит бесконечное количество комбинации бесконечных десятичных дробей, то он покрывает все точки в этом интервале. Это нестрогое доказательство уравнения c = 2^a.
Обозначения мощностей а и c происходят от слов account и continum, но именно такая последовательность букв порождает вопрос: а есть ли бесконечное множество мощностью b, которое меньше c, но больше a. Если и есть, то пока они неизвестны. А вот комплекс больший по мощности, чем c, есть. Это булеан континуального множества с мощностью 2^c. А у этого булеана тоже есть булеан с ещё большей мощностью.
Бесконечные множества бывают счётными и несчётными. Счётными называют те, элементы в которых можно пересчитать, то есть эквивалентные совокупности натуральных чисел. К ним относятся само множество натуральных, а также целых и рациональных чисел. Среди несчётных выделяют континуальные множества, эквивалентные совокупности всех точек на прямой. К ним относятся действительные и иррациональные числа. Континуальность является булеаном счётного набора.
Источник