- К расчету консольных балок
- 1 вариант
- 2 вариант
- Для 1 пролета:
- Для 2 пролета:
- Как видим, разница в значениях моментов при расчете разными способами набежала нешуточная 0 и 7.03. И хотя для деревянной доски такая разница принципиального значения не имеет, так как расчет все равно ведется по максимальному изгибающему моменту. А вот если бы мы рассчитывали ж/б конструкцию, то неучтенный момент в пролете мог бы привести к обрушению.
- Для 3 пролета (проверка):
- Для консоли (проверка):
- Для 1 пролета:
- В пролете:
- В пролете:
- Вот такая она — консольная балка.
- Консольная балка
- См. также
- Полезное
- Смотреть что такое «Консольная балка» в других словарях:
К расчету консольных балок
Консольная балка — достаточно сложная балка, не смотря на кажущуюся простоту. Например, есть доска длиной 3 м, доска лежит на некоем основании шириной 1 м, при этом свесы доски с каждой из сторон составляют 1 м. На доску действует равномерно распределенная нагрузка 100 кг/м. И тут возникает вопрос: как рассчитать такую балку?
1 вариант
Вроде бы у балки одна опора и повороту поперечных сечений она не мешает и получается, что эту опору можно рассматривать как шарнирную. Вот только такого понятия, как ширина опоры, во всяком случае на первом этапе расчета, при рассмотрении расчетных схем балок не существует.
Получается, что нашу доску мы можем рассматривать как балку с одной опорой и 2 консолями. Если ширину опоры не учитывать, длина консолей будет k = 1 м, а максимальный момент, действующий на опоре, будет составлять:
М = -qk 2 /2 = -100·1 2 /2 = -50 кгc·м
Вроде бы все правильно, но и максимальная поперечная сила будет также действовать на опоре и будет равна опорной реакции А = 2qk = 200 кг. А между тем у нас доска длиной не 2 м, а 3, значит и опорная реакция должна быть больше А = ql = 100·3 = 300 кг.
А вот если мы сдвинем доску на 25 см, то у нас согласно принятой расчетной схеме получится балка с одной опорой и двумя консолями, не равными по длине, длина одной консоли будет 1.25 м, а второй 0.75 м и такая балка вообще не будет находиться в состоянии равновесия, проще говоря упадет. Между тем доска продолжает преспокойно лежать на основании, а значит нужно искать другой подход к расчету подобной балки. И такой подход есть.
2 вариант
Если вспомнить о том, что любая балка имеет некоторую жесткость, далекую от бесконечной, то такая балка под воздействием нагрузок будет деформироваться, проще говоря прогибаться. И совсем не факт, что в результате деформации та часть доски, которая находится над основанием, будет с этим основанием контактировать по всей площади. А значит в подобных случаях мы можем рассматривать доску как однопролетную балку с пролетом 1 м между опорами и с консолями 1 м.
В этом случае значение опорного момента не изменится, но теперь их будет 2 и опорных реакций также будет 2 и они будут составлять А = В = 150 кг. А для балки с разными консолями моменты на опорах составят:
МА = -qk1 2 /2 = -100·0.75 2 /2 = -28.125 кгc·м
МВ = -qk2 2 /2 = -100·1.25 2 /2 = -78.125 кгc·м
Строго говоря, такой подход к решению вопроса также не является совсем точным, так как доска будет контактировать с основанием не в двух точках, а на двух участках и опорные реакции будут представлять собой неравномерно распределенные нагрузки, а значит и расчетную длину консолей следует немного увеличить, но сейчас не об этом.
Представим себе следующую ситуацию. Та же доска длиной 3 м теперь лежит на двух опорах, ширина каждой опоры 50 см, расстояние в свету между опорами 1 м, консоли с каждой стороны по 0.5 м. Если опять же рассчитывать эту балку так сказать общепринятым способом, т.е. не учитывать ширину опор и рассматривать доску как однопролетную балку длиной 2 м с консолями 0.5 м, то мы получим следующие данные:
А = В = 200/2 = 100 кг (с учетом всей длины доски 150 кг)
МА = МВ = -qk 2 /2 = -100·0.5 2 /2 = -12.5 кгc·м
Мl/2 =Al/2 — q(k + l/2) 2 /2 = 100·0.5 — 100(0.5 +0.5) 2 /2 = 0 кгм
А если мы будем рассматривать доску как трехплолетную балку с консолями k = 0.5 м и пролетами l1 = l3 = 0.5 м и l2 = 1 м, то такая балка будет уже дважды статически неопределимой и чтобы рассчитать такую балку можно воспользоваться методом трех моментов.
R ф 1 = R ф 2 = A ф + В ф = ql1 3 /24 + ql2 3 /24 = 100(0.5 3 + 1 3 )/24 = 4.6875
Так как моменты на крайних опорах уже известны, то уравнения примут следующий вид
— 0.5·12.5 + 3MB + MC = — 28.125;
MB + 3MC — 6.25 = — 28.125;
Так как наша балка является симметричной и приложенная нагрузка является симметричной и соответственно МВ = МС, то мы сразу, без дальнейших долгих и мучительных вычислений можем определить значение моментов:
MB = MС = (- 28.125 + 6.25)/(3 + 1) = — 5.46875 кгс·м
Для определения момента в середине среднего пролета определим значения опорных реакций, исходя из следующих условий:
Для 1 пролета:
Аl1 — q(k + l1) 2 /2 = MB; A = (MB + q(k + l1 2 /2)/l1 = (-5.46875 + 100·1 2 /2)/0.5 = 89.0625 кгс
тогда значение момента в середине первого пролета составит
M0.5l1 = 0.25A — q0.75 2 /2 = 0.25·89.0625 — 100·0.75 2 /2 = — 5.86 кгс·м
Для 2 пролета:
тогда максимальное значение момента во втором пролете составит
Mmax = A + 0.5B — q1.5 2 /2 = 89.0625 + 0.5·60.9375 — 100·1.5 2 /2 = 7.03125 кгс·м
Как видим, разница в значениях моментов при расчете разными способами набежала нешуточная 0 и 7.03. И хотя для деревянной доски такая разница принципиального значения не имеет, так как расчет все равно ведется по максимальному изгибающему моменту. А вот если бы мы рассчитывали ж/б конструкцию, то неучтенный момент в пролете мог бы привести к обрушению.
Для 3 пролета (проверка):
2A + 1.5B + 0.5С — q(2.5) 2 /2 = МD; C = (MD — 2A — 1.5B + q(2.5) 2 /2)/0.5 = (-12.5 — 2·89.0625 — 1.5·60.9375 + 100·3.125)/0.5 = 60.9375 кгс
Для консоли (проверка):
2.5A + 2B + 1С + 0.5D — q(3) 2 /2 = 0; (2.5 + 0.5)89.0625 + (2 + 1)60.9375 — 100·4.5) = 0 кгс
Это условие соблюдается, но такой проверки недостаточно. Нужно еще проверить, будет ли прогиб на опорах равен нулю. Вот только для консольной балки с началом координат, совпадающим с началом консоли, делать это нужно аккуратно. Для этого сначала нужно определить угол поворота в начале консоли.
fА = f0 + tgΘнk — qk 4 /24EI = 0;
В данном случае f0 — это некая постоянная интегрирования не равная нулю по вышеуказанным причинам. Тогда
tgΘнk — qk 4 /24EI = tgΘн(k + l1) + Al1 3 /6EI — q(k + l1) 4 /24EI;
-tgΘнl1 = Al1 3 /6EI + qk 4 /24EI — q(k + l1) 4 /24EI;
-0.5tgΘн = 89.0625·0.5 3 ·4/24EI + qk 4 /24EI — q(k + l1) 4 /24EI;
tgΘн = 98.4375/24EI;
f0 = -tgΘнk + qk 4 /24EI = -42.96875/24EI;
при таком тангенсе угла наклона в начале балки и с учетом начального прогиба прогиб на опоре С составит:
fС = f0 + tgΘн2 + A1.5 3 /6EI + B1 3 /6EI — q2 4 /24EI = (-42.96875 + 196.875 + 1202.34375 + 243.75 — 1600)/24EI = 0;
прогиб на опоре D составит:
fD = f0 + 2.5tgΘA + A2 3 /6EI + B1.5 3 /6EI +C0.5 3 /6EI — q2.5 4 /24EI = (-42.96875 +246.09375 + 2850 + 853.125 — 3906.25)ql 4 /EI = 0;
Конечно же описанная выше ситуация маловероятна. Как правило ширина опор балок не превышает 5-10% от длины пролета. Но даже при такой, казалось бы, относительно небольшой ширине опор в расчетах возникает погрешность. Об этом необходимо помнить при выборе расчетной схемы и при определении длины пролета.
Кроме того, при малой ширине опор и соответствующей длине пролетов и консолей увеличивается вероятность того, что балка будет опираться на опору не в двух, а в одной точке (условно). И тогда такую балку можно опять-таки рассматривать как однопролетную с консолями. Например, та же доска длиной 3 м лежит на 2 опорах шириной 0.2 м таким образом, что расстояние в свету между опорами составляет 2 м, а консоли 0.3 м. На доску действует все та же равномерно распределенная нагрузка 100 кг/м. Тогда приведенные выше уравнения трех моментов примут следующий вид:
R ф 1 = R ф 2 = A ф + В ф = ql1 3 /24 + ql2 3 /24 = 100(0.2 3 + 2 3 )/24 = 33.3667
Так как моменты на крайних опорах уже известны, то уравнения примут следующий вид
— 0.2·1.125 + 4.4MB + 2MC = — 200.2;
2MB + 4.4MC — 0.225 = — 200.2;
Так как наша балка является симметричной и приложенная нагрузка является симметричной и соответственно МВ = МС, то:
MB = MС = (- 200.2 + 0.225)/(4.4 + 2) = — 31.24609375 кгс·м
Для определения момента в середине среднего пролета определим значения опорных реакций, исходя из следующих условий:
Для 1 пролета:
Аl1 — q(k + l1) 2 /2 = MB; A = (MB + q(k + l1 2 /2)/l1 = (-31.2461 + 100·0.5 2 /2)/0.5 = -18.7461 кгс
Все. Дальше можно ничего не считать. Отрицательное значение реакции на опоре А означает, что доска не будет контактировать с опорой в точке А, а значит ее можно рассматривать, как однопролетную, но с пролетом 2 м и консолями 0.5 м и тогда на опорах
MА = МВ = — q0.5 2 /2 = — 12.5 кгс·м
В пролете:
Mmax = A — q1.5 2 /2 = 150 — 100·1.5 2 /2 = 37.5 кгс·м
А если бы мы рассчитывали эту балку без учета ширины опор, как однопролетную с пролетом 2 м и консолями 0.3 м, то при той же нагрузке получили бы
MА = МВ = — q0.3 2 /2 = — 4.5 кгс·м
В пролете:
Mmax = A — q1.5 2 /2 = 130 — 100·1.3 2 /2 = 45.5 кгс·м
Соответственно при расчете по осям, т.е. при пролете 2.2 м и при консолях 0.4 м разница была бы еще больше.
Вот такая она — консольная балка.
На этом пока все.
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630
- Расчет конструкций . Основы строймеха и сопромата . Балки
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).
Источник
Консольная балка
Консольная балка в статике — горизонтальная балка с одной жёстко фиксированной опорой.
Опора должна фиксировать все шесть степеней свободы. Реакции опоры — три силы и три момента
или, в векторной форме
и
.
См. также
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Консольная балка» в других словарях:
консольная балка — Простая балка, имеющая одну или две консоли. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики строительная механика, сопротивление материалов EN beam … Справочник технического переводчика
Консольная балка — тип стропильной фермы, поддерживающей крышу. (Архитектура: иллюстрированный справочник, 2005) … Архитектурный словарь
Балка ангельская — – консольная балка, украшенная резным ангелом. [Архитектура: иллюстрированный справочник, 2005] Рубрика термина: Архитектура Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов
Консольная конструкция — Консоли с изображением слона (Мадрид) Консоль в архитектуре выступающий из стены камень, имеющий своим назначением подпирать какую либо часть постройки, ещё более выступающую вперёд, напр. карниз, балкон, стенной вертикальный уступ и т. п.… … Википедия
Балка консольная — – простая балка, имеющая одну или две консоли. [Строительная механика. Терминология. Выпуск 82. Изд. «Наука» М.1970] Балка консольная – простая балка, имеющая одну или две консоли. [Техническая эксплуатация железобетонных конструкций… … Энциклопедия терминов, определений и пояснений строительных материалов
БАЛКА 1 — БАЛКА 1, и, ж. Часть сооружения, машины, станка опорный брус. Железобетонная, металлическая, деревянная б. Консольная б. Тавровая б. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
балка — БАЛКА, и, жен. Часть сооружения, машины, станка опорный брус. Железобетонная, металлическая, деревянная б. Консольная б. Тавровая б. | прил. балочный, ая, ое. Балочное перекрытие (из балок). II. БАЛКА, и, жен. Лощина, ложбина, овраг, иногда… … Толковый словарь Ожегова
Ангельская балка — консольная балка, украшенная резным ангелом. (Архитектура: иллюстрированный справочник, 2005) … Архитектурный словарь
Балки — Термины рубрики: Балки Балка Балка простая Балка арочная Балка бистальная Балка виренделя … Энциклопедия терминов, определений и пояснений строительных материалов
Литейный мост — Литейный мост … Википедия
Источник