Что значит колебания одного направления
Сложение гармонических колебаний одного направления и одинаковой частоты. Биения | |
Пусть точка одновременно участвует в двух гармонических колебаниях одинакового периода, направленных вдоль одной прямой. Сложение колебаний будем проводить методом векторных диаграмм (рис. 2.2). Пусть колебания заданы уравнениями
Отложим из точки О вектор Нам известно, что суммарная проекция вектора По правилу сложения векторов найдем суммарную амплитуду: Результирующую амплитуду найдем по формуле Начальная фаза определяется из соотношения Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Из (2.2.2) следует, что амплитуда А результирующего колебания зависит от разности начальных фаз Рассмотрим несколько простых случаев. 1. Разность фаз равна нулю или четному числу π, то есть так как 2. Разность фаз равна нечетному числу π, то есть На рис. 2.4 изображена амплитуда результирующего колебания А, равная разности амплитуд складываемых колебаний (колебания в противофазе). 3. Разность фаз изменяется во времени произвольным образом: Из уравнения (2.2.6) следует, что Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями. Строго говоря, это уже не гармонические колебания. Пусть амплитуды складываемых колебаний равны А, а частоты равны ω и Сложим эти выражения, пренебрегая Результирующее колебание (2.2.7) можно рассматривать как гармоническое с частотой ω и амплитудой Аб, которая изменяется по следующему периодическому закону: Характер зависимости (2.2.8) показан на рис. 2.5, где сплошные жирные линии дают график результирующего колебания, а огибающие их – график медленно меняющейся по уравнению (2.2.7) амплитуды. Определение частоты тона (звука определенной высоты) биений между эталонным и измеряемым колебаниями – наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т.д. Вообще, колебания вида Любые сложные периодические колебания Представление периодической функции в таком виде связывают с понятием гармонического анализа сложного периодического колебания, или разложения Фурье (то есть представление сложных модулированных колебаний в виде ряда (суммы) простых гармонических колебаний). Слагаемые ряда Фурье, определяющие гармонические колебания с частотами ω, 2ω, 3ω, . называются первой (или основной), второй, третьей и т.д. гармониками сложного периодического колебания. Источник |