Уравнение касательной к графику функции
п.1. Уравнение касательной
Рассмотрим кривую \(y=f(x)\).
Выберем на ней точку A с координатами \((x_0,y_0)\), проведем касательную AB в этой точке.
Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке \(x_0\): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: \((y_B-y_A)=k(x_B-x_A)\).
Для \(A(x_0,y_0),\ B(x,y)\) получаем: \begin
Чтобы записать уравнение касательной с угловым коэффициентом в виде \(y=kx+b\), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=\underbrace
п.2. Алгоритм построения касательной
На входе: уравнение кривой \(y=f(x)\), абсцисса точки касания \(x_0\).
Шаг 1. Найти значение функции в точке касания \(f(x_0)\)
Шаг 2. Найти общее уравнение производной \(f’ (x)\)
Шаг 3. Найти значение производной в точке касания \(f'(x_0 )\)
Шаг 4. Записать уравнение касательной \(y=f’ (x_0)(x-x_0)+f(x_0)\), привести его к виду \(y=kx+b\)
На выходе: уравнение касательной в виде \(y=kx+b\)
Пусть \(f(x)=x^2+3\). Найдем касательную к этой параболе в точке \(x_0=1\). |
\(f(x_0)=1^2+3=4 \)
\(f'(x)=2x \)
\(f'(x_0)=2\cdot 1=2\)
Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: \(y=2x+2\)
п.3. Вертикальная касательная
Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода \(x_0\notin D\), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку \(x_0\in D\), входящую в область определения. График функции и касательная имеют одну общую точку \((x_0,y_0)\).
Вертикальные касательные характерны для радикалов вида \(y=\sqrt[n]
Пусть \(f(x)=\sqrt[5] Найдем касательную к этой кривой в точке \(x_0=1\). |
\(f(x_0)=\sqrt[5]<1-1>+1=1\)
\(f'(x)=\frac15(x-1)^<\frac15-1>+0=\frac15(x-1)^<-\frac45>=\frac<1><5(x-1)^<\frac45>> \)
\(f'(x_0)=\frac<1><5(1-1)^<\frac45>>=\frac10=+\infty\)
В точке \(x_0\) проходит вертикальная касательная.
Её уравнение: \(x=1\)
Ответ: \(y=2x+2\)
п.4. Примеры
Пример 1. Для функции \(f(x)=2x^2+4x\)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.
Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0\Rightarrow 2x(x+2)=0\Rightarrow \left[ \begin Касательная в точке \(x_0=0\): \begin |
б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.
Общее уравнение касательной: \(f'(x)=4x+4\) По условию \(f'(x_0)=tg\alpha=tg45^\circ=1\) Решаем уравнение: $$ 4x_0+4=1\Rightarrow 4x_0=-3\Rightarrow x_0=-\frac34 $$ Точка касания \(x_0=-\frac34\) \begin |
в) найдите, в какой точке касательная будет параллельна прямой \(2x+y-6=0\). Напишите уравнение этой касательной.
Найдем угловой коэффициент заданной прямой: \(y=-2x+6\Rightarrow k=-2\). Касательная должна быть параллельной, значит, её угловой коэффициент тоже \(k=-2\). Получаем уравнение: \begin |
г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.
У горизонтальной прямой \(k=0\). Получаем уравнение: \(f'(x_0)=0\). \begin |
Ответ: а) \(y=4x\) и \(y=-4x-8\); б) \(y=x-\frac98\); в) \(2x+y+\frac92=0\); г) \(y=-2\)
Пример 3*. Найдите точку, в которой касательная к графику функции \(f(x)=\frac
Угловой коэффициент данной прямой \(k_1=11\).
Угловой коэффициент перпендикулярной прямой \(k_2=-\frac<1>
Уравнение касательной при \(x_0=-14\) \begin
Ответ: точка касания (-14;-4), уравнение \(y=-\frac
и точка касания (8;-2), уравнение \(-\frac
Пример 4*. Найдите уравнения общих касательных к параболам \(y=x^2-5x+6\) и \(y=x^2+x+1\). Укажите точки касания.
Найдем производные функций: \begin
Запишем уравнения касательных \(g_1(x)\) и \(g_2(x)\) через эти переменные. \begin
Точки касания: \begin
Ответ: касательная \(y=-\frac x3+\frac59\); точки касания \(\left(\frac73;-\frac29\right)\) и \(\left(-\frac23;\frac79\right)\)
Пример 5*. Докажите, что кривая \(y=x^4+3x^2+2x\) не пересекается с прямой \(y=2x-1\), и найдите расстояние между их ближайшими точками.
Решим уравнение: \(x^4+3x^2+2x=2x-1\) \begin
Значит, \(x\in\varnothing\) — решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.
Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом \(k=2\), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой \(y=2x-1\).
Строим уравнение касательной. По условию: \(f'(x)=4x^3+6x+2=2\) \begin
Уравнение касательной: \(y=2(x-0)+0=2x\)
Ищем расстояние между двумя параллельными прямыми: \(y=2x\) и \(y=2x-1\). Перпендикуляр из точки (0;0) на прямую \(y=2x-1\) имеет угловой коэффициент \(k=-\frac12\), его уравнение: \(y=-\frac12 x+b\). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и \(b=0\). |
Уравнение перпендикуляра: \(y=-\frac x2\).
Находим точку пересечения прямой \(y=2x-1\) и перпендикуляра \(y=-\frac x2\): \begin
Находим расстояние \(OA=\sqrt<0,4^2+(-0,2)^2>=0,2\sqrt<2^2+1^2>=\frac<\sqrt<5>><5>\)
Ответ: \(\frac<\sqrt<5>><5>\)
Источник
Что значит касательные пересекаются
§3. Свойства касательных, хорд, секущих. Вписанные и описанные четырёхугольники
Рис. 17 |
Если из точки к окружности проведены две касательные, то длины отрезков от этой точки до точек касания равны и прямая, проходящая через центр окружности и эту точку, делит угол между касательными пополам (рис. 17).
Используя это свойство, легко решить следующую задачу.
На основании $$ AC$$ равнобедренного треугольника $$ ABC$$ расположена точка $$ D$$ так, что $$ AD=a,CD=b$$. Окружности, вписанные в треугольники $$ ABD$$ и $$ DBC$$, касаются прямой $$ BD$$ в точках $$ M$$ и $$ N$$ соответственно. Найти отрезок $$ MN$$.
Рис. 18 | Рис. 18a |
$$ DE=y$$, $$ QD=x+y$$, $$ AQ=AP=a-(x+y)$$, $$ EC=CF=b-y$$, $$ PB=BM=z, BF=BN=z+x$$ (рис. 18а). Выразим боковые стороны:
$$ AB=z+a-x-y$$, $$ BC=z+x+b-y$$. По условию $$ AB=BC$$; получим
Четырёхугольник называется описанным около окружности, если окружность касается всех его сторон.
В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы длин противолежащих сторон равны.
Рис. 19 |
Пусть четырёхугольник $$ ABCD$$ описан около окружности (рис. 19).
По свойству касательных: $$ AM=AN$$, $$ NB=BP$$, $$ PC=CQ$$ и $$ QD=DM$$, поэтому
$$ AM+MD+BP+PC=AN+NB+CQ+QD$$, что означает
Докажем обратное утверждение. Пусть в выпуклом четырёхугольнике $$ ABCD$$ стороны удовлетворяют условию $$ AB+CD=BC+AD.$$ Положим $$ AD=a, AB=b, BC=c, CD=d.$$
По условию $$ a+c=b+d,$$ что равносильно $$ c-b=d-a.$$
Пусть $$ d>a.$$ Отложим на большей стороне $$ CD$$ меньшую сторону `DM=a` (рис. 20). Так как в этом случае $$ c>b$$, то также отложим $$ BN=b$$, получим три равнобедренных треугольника `ABN`, `ADM` и `MCN`.
Рис. 20 |
В равнобедренном треугольнике биссектриса угла при вершине является медианой и высотой, отсюда следует, что если провести биссектрисы углов `B`, `C` и `D`, то они разделят пополам соответственно отрезки `AN`, `MN` и `AM` и будут им перпендикулярны. Это означает, что биссектрисы будут серединными перпендикулярами трёх сторон треугольника $$ ANM$$, а они по теореме пересекаются в одной точке. Обозначим эту точку $$ O$$. Эта точка одинаково удалена от отрезков `AB` и `BC` (лежит на $$ OB$$), `BC` и `CD` (лежит на $$ OC$$) и `CD` и `AD` (лежит на $$ OD$$), следовательно, точка $$ O$$ одинакова удалена от всех четырёх сторон четырёхугольника $$ ABCD$$ и является центром вписанной окружности. Случай $$ d=a$$, как более простой, рассмотрите самостоятельно.
Равнобокая трапеция описана около окружности. Найти радиус окружности, если длины оснований равны $$ a$$ и $$ b$$.
Рис. 21 |
Пусть в равнобокой трапеции $$ ABCD$$ `BC=b`, `AD=a` (рис. 21). Эта трапеция равнобокая $$ (AB=CD)$$, она описана около окружности, следовательно, $$ AB+CD=AD+BC$$ Отсюда получаем:
Проведём $$ BM$$ и $$ CN$$ перпендикулярно $$ AD$$. Трапеция равнобокая, углы при основании равны, следовательно, равны и треугольники $$ ABM$$ и $$ DCN$$ и $$ AM=ND$$. По построению $$ MBCN$$ — прямоугольник, $$ MN=BC=b$$ поэтому $$ AM=<\displaystyle \frac<1><2>>(AD-BC)-<\displaystyle \frac<1><2>>(a-b)$$. Из прямоугольного треугольника $$ ABM$$ находим высоту трапеции $$ ABCD$$:
Очевидно, что высота трапеции равна диаметру окружности, поэтому
радиус вписанной окружности равен $$ \overline<)r=<\displaystyle \frac<1><2>>\sqrt
Очень полезная задача. Заметим, что из решения также следует, что в равнобокой описанной трапеции $$ \overline<)\mathrm
Градусная мера угла, образованного хордой и касательной, имеющими общую точку на окружности, равна половине градусной меры дуги, заключённой между его сторонами (рис. 22).
Рис. 22 |
Рассматриваем угол $$ NAB$$ между касательной $$ NA$$ и хордой $$ AB$$. Если $$ O$$ — центр окружности, то $$ OA\perp AN$$, `/_OAB=/_OBA=90^@alpha`. Сумма углов треугольника равна `180^@`, следовательно, $$ \angle AOB=2\alpha $$. Итак, $$ \alpha =\angle NAB=<\displaystyle \frac<1><2>>\angle AOB.$$
Обратим внимание, что угол $$ NAB$$ равен любому вписанному углу $$ AKB$$, опирающемуся на ту же дугу $$ AB$$.
Случай `/_alpha>=90^@` рассматривается аналогично.
Из этого свойства следует важная теорема «о касательной и секущей», которая часто используется при решении задач.
Пусть к окружности проведены из одной точки касательная $$ MA$$ и секущая $$ MB$$, пересекающая окружность в точке $$ C$$ (рис. 23). Тогда справедливо равенство
т. е. если из точки `M` к окружности проведены касательная и секущая, то квадрат отрезка касательной от точки `M` до точки касания равен произведению длин отрезков секущей от точки `M` до точек её пересечения с окружностью.
Угол $$ MAC$$ образован хордой и касательной, $$ \angle MAC=\angle ABC$$. Так как в треугольниках $$ MAC$$ и $$ MBA$$ угол $$ M$$ общий, то по двум углам они подобны. Из подобия следует:
Рис. 23 |
Если из точки $$ M$$ к окружности проведены две секущие: $$ MB$$, пересекающая окружность в точке $$ C$$ и $$ MK$$, пересекающая окружность в точке $$ L$$ (рис. 23), то справедливо равенство $$ MB·MC=MK·ML$$.
Рис. 24 |
Окружность проходит через вершины $$ C u D$$ трапеции $$ ABCD,$$ касается боковой стороны $$ AB$$ в точке $$ B$$ и пересекает большее основание $$ AD$$ в точке $$ K$$ (рис. 24). Известно, что $$ AB=5\sqrt<3>$$, $$ BC=5$$ и $$ KD=10$$.
Найти радиус окружности.
1. Пусть $$ AK=x$$ тогда $$ AD=10+x$$ю
По теореме о касательной и секущей:
$$ A^<2>=AK·KD$$ т. е. $$ 75=x(x+10)$$, откуда $$ x=5$$. Итак $$ AD=15$$.
2. Заметим теперь, что угол $$ ABD$$ между касательной $$ AB$$ и хордой $$ BD$$ равен вписанному углу $$ BCD$$, а из параллельности прямых $$ AD$$ и $$ BC$$ следует равенство углов `1` и `2`. По первому признаку подобия $$ △ABD\sim △DCB$$. Из подобия имеем $$ <\displaystyle \frac
3. Так как $$ KB=CD$$ ($$ KBCD$$ — вписанная трапеция, она равнобокая), и $$ K^<2>+B
Значит, её радиус равен `5`.
Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противолежащих углов равна `180^@`.
Из этой теоремы следует:
a) из всех параллелограммов только около прямоугольника можно описать окружность;
б) около трапеции можно описать окружность только тогда, когда она равнобокая.
Рис. 25 |
В треугольнике $$ ABC$$ биссектрисы $$ AD$$ и $$ BF$$ пересекаются в точке $$ O$$ (рис. 25). Известно, что точки $$ F, O, D$$, и `C` лежат на одной окружности и что $$ DF=\sqrt<3>.$$ Найти площадь треугольника $$ ODF$$.
Четырёхугольник $$ DOFC$$ вписан в окружность, по теореме 9:
$$ \angle DOF=\pi -\angle C$$, т. е. $$ \pi —<\displaystyle \frac<1><2>>(\angle A+\angle B)=\pi -\angle C$$, откуда, учитывая, что $$ \angle A+\angle B+\angle C=\pi $$, находим $$ \angle С=<\displaystyle \frac<\pi ><3>>$$.
Теперь заметим, что $$ O$$ — точка точка пересечения биссектрис, $$ CO$$ — биссектриса угла $$ C,$$ следовательно, углы $$ OCD$$ и $$ OCF$$ равны друг другу. Это вписанные углы, поэтому вписанные углы $$ ODF$$ и $$ OFD$$ равны им и равны друг другу. Таким образом,
Треугольник $$ DOF$$ равнобедренный с основанием $$ DF=\sqrt<3>$$ и углом при основании `30^@`. Находим его высоту, опущенную из вершины $$ O$$ и площадь треугольника $$ ODF: S=<\displaystyle \frac<1><2>>h·DF=<\displaystyle \frac<\sqrt<3>><4>>$$.
Источник
1>