- Что такое рендеринг? И что такое рендер? Словарь разработчиков компьютерных игр!
- Что такое рендеринг? (для программистов)
- Рендер
- Виды рендеринга
- Растеризация полигональной модели
- Трасировка лучей (англ. ray tracing)
- Рендеринг для художников
- Растеризация векторной графики
- Читайте дальше
- Послесловие
- Blogged Answers: (почти) полное руководство по особенностям рендеринга в React. Часть 1
- Что такое рендеринг?
- Обзор процесса рендеринга
- Этапы рендеринга и фиксации
- Как в React реализован рендеринг?
- Очередь рендеринга
- Что такое рендер или рендеринг
- Что такое рендер ( render / rendering )?
- Сфера применения
- Системы рендеринга
- Рендеринг в архитектурной 3D визуализации
- Основные достоинства V-Ray:
- Скорость рендера
- История и основы вычислительных процессов рендеринга
- Scanline rendering и растеризация
- Ray casting
- Radiosity
- Ray tracing
- Пара интересных фактов про рендеринг
Что такое рендеринг? И что такое рендер? Словарь разработчиков компьютерных игр!
В продолжении ликбеза по компьютерной графике как для программистов, так и для художников хочу поговорить о том что такое рендеринг. Вопрос не так сложен как кажется, под катом подробное и доступное объяснение!
Я начал писать статьи, которые являются ликбезом для разработчика игр. И поторопился, написав статью про шейдеры, не рассказав что же такое рендеринг. Поэтому эта статья будет приквелом к введению в шейдеры и отправным пунктом в нашем ликбезе.
Что такое рендеринг? (для программистов)
Итак, Википедия дает такое определение: Ре́ндеринг (англ. rendering — «визуализация») — термин в компьютерной графике, обозначающий процесс получения изображения по модели с помощью компьютерной программы.
Довольно неплохое определение, продолжим с ним. Рендеринг — это визуализация. В компьютерной графике и 3д-художники и программисты под рендерингом понимают создание плоской картинки — цифрового растрового изображения из 3д сцены.
То есть, неформальный ответ на наш вопрос «Что такое рендеринг?» — это получение 2д картинки (на экране или в файле не важно). А компьютерная программа, производящая рендеринг, называется рендером (англ. render) или рендерером (англ. renderer).
Рендер
В свою очередь словом «рендер» называют чаще всего результат рендеринга. Но иногда и процесс называют так же (просто в английском глагол — render перенесся в русский, он короче и удобнее). Вы, наверняка, встречали различные картинки в интернете, с подписью «Угадай рендер или фото?». Имеется ввиду это 3D-визуализация или реальная фотография (уж настолько компьютерная графика продвинулась, что порой и не разберешься).
Виды рендеринга
В зависимости от возможности сделать вычисления параллельными существуют:
- многопоточный рендеринг — вычисления выполняются параллельно в несколько потоков, на нескольких ядрах процессора,
- однопоточный рендеринг — в этом случае вычисления выполняются в одном потоке синхронно.
Существует много алгоритмов рендеринга, но все их можно разделить на две группы по принципу получения изображения: растеризация 3д моделей и трасировка лучей. Оба способа используются в видеоиграх. Но трасировка лучей чаще используется не для получения изображений в режиме реального времени, а для подготовки так называемых лайтмапов — световых карт, которые предрасчитываются во время разработки, а после результаты предрасчета используются во время выполнения.
В чем суть методов? Как работает растеризация и трасировка лучей? Начнем с растеризация.
Растеризация полигональной модели
Сцена состоит из моделей, расположенных на ней. В свою очередь каждая модель состоит из примитивов.
Это могут быть точки, отрезки, треугольники и некоторые другие примитивы, такие как квады например. Но если мы рендерим не точки и не отрезки, любые примитивы превращаются в треугольники.
Задача растеризатора (программа, которая выполняет растеризацию) получить из этих примитивов пиксели результирующего изображения. Растеризация в разрезе графического пайплайна, происходит после вершинного шейдера и до фрагментного (Статья про шейдеры).
*возможно следующей статьёй будет обещанный мной разбор графического пайплайна, напишите в комментариях нужен ли такой разбор, мне будет приятно и полезно узнать скольким людям интересно это всё. Я сделал отдельную страничку где есть список разобранных тем и будущих — Для разработчиков игр
В случае с отрезком нужно получить пиксели линии соединяющей две точки, в случае с треугольником пиксели которые внутри него. Для первой задачи применяется алгоритм Брезенхема, для второй может применяться алгоритм заметания прямыми или проверки барицентрических координат.
Сложная модель персонажа состоит из мельчайших треугольников и растеризатор генерирует из неё вполне достоверную картинку. Почему тогда заморачиваться с трассировкой лучей? Почему не растеризовать и все? А смысл вот в чем, растеризатор знает только своё рутинное дело, треугольники — в пиксели. Он ничего не знает об объектах рядом с треугольником.
А это значит что все физические процессы которые происходят в реальном мире он учесть не в состоянии. Эти процессы прямым образом влияют на изображение. Отражения, рефлексы, тени, подповерхностное рассеивание и так далее! Все без чего мы будем видеть просто пластмассовые модельки в вакууме…
А игроки хотят графоний! Игрокам нужен фотореализм!
И приходится графическим программистам изобретать различные техники, чтобы достичь близости к фотореализму. Для этого шейдерные программы используют текстуры, в которых предрассчитаны разные данные света, отражения, теней и подповерхностного рассеивания.
В свою очередь трассировка лучей позволяет рассчитать эти данные, но ценой большего времени рассчета, которое не может быть произведено во время выполнения. Рассмотрим, что из себя представляет этот метод.
Трасировка лучей (англ. ray tracing)
Помните о корпускулярно волновом дуализме? Напомню в чем суть: свет ведёт себя и как волны и как поток частиц — фотонов. Так вот трассировка (от англ «trace» прослеживать путь), это симуляция лучей света, грубо говоря. Но трассирование каждого луча света в сцене непрактично и занимает неприемлемо долгое время.
Мы ограничимся относительно малым количеством, и будем трассировать лучи по нужным нам направлениям.
А какие направления нам нужны? Нам надо определять какие цвета будут иметь пиксели в результирующей картинке. Тоесть количество лучей мы знаем, оно равно количеству пикселей в изображении.
Что с направлением? Все просто, мы будем трассировать лучи в соответствии с точкой наблюдения (то как наша виртуальная камера направлена). Луч встретится в какой-то точке с объектом сцены (если не встретится, значит там темный пиксель или пиксель неба из скайбокса, например).
При встрече с объектом луч не прекращает своё распространение, а разделяется на три луча-компонента, каждый из которых вносит свой вклад в цвет пикселя на двумерном экране: отражённый, теневой и преломлённый. Количество таких компонентов определяет глубину трассировки и влияет на качество и фотореалистичность изображения. Благодаря своим концептуальным особенностям, метод позволяет получить очень фотореалистичные изображения, однако из-за большой ресурсоёмкости процесс визуализации занимает значительное время.
Рендеринг для художников
Но рендеринг это не только программная визуализация! Хитрые художники тоже используют его. Так что такое рендеринг с точки зрения художника? Примерно то же самое, что и для программистов, только концепт-художники выполняют его сами. Руками. Точно так же как рендерер в видео-игре или V-ray в Maya художники учитывают освещение, подповерхностное рассеивание, туман и др. факторы, влияющие на конечный цвет поверхности.
К примеру картинка выше, поэтапно прорабатывается таким образом: Грубый скетч — Лайн — Цвет — Объем — Рендер материалов.
Рендер материалов включает в себя текстурирование, проработку бликов — металлы, например, чаще всего очень гладкие поверхности, которые имеют четкие блики на гранях. Помимо всего этого художники сталкиваются с растеризацией векторной графики, это примерно то же самое, что и растеризация 3д-модели.
Растеризация векторной графики
Суть примерно такая же, есть данные 2д кривых, это те контуры, которыми заданы объекты. У нас есть конечное растровое изображение и растеризатор переводит данные кривых в пиксели. После этого у нас нет возможности масштабировать картинку без потери качества.
Читайте дальше
Статьи из рубрики «Ликбез для начинающих разработчиков игр«, скорее всего окажутся очень для Вас полезными, позвольте-с отрекомендовать:
- Что такое шейдеры? — простое объяснение сложных и страшных шейдеров
- Партиклы — система частиц — Полезный обзор частиц и подборка видео-уроков, по созданию спецэффектов в Unity3d
Послесловие
В этой статье, я надеюсь, вы осили столько букв, вы получили представление о том, что такое рендеринг, какие виды рендеринга существуют. Если какие-то вопросы остались — смело задавайте их в комментариях, я обязательно отвечу. Буду благодарен за уточнения и указания на какие-то неточности и ошибки.
Дорогой друг! Тебе есть что сказать? Понравился пост? Не стесняйся! Оставь комментарий, нам очень важно ТВОЕ мнение
Источник
Blogged Answers: (почти) полное руководство по особенностям рендеринга в React. Часть 1
Подробности о том, как происходит рендеринг в React и как влияет на рендеринг применение контекста.
Я часто сталкиваюсь с недопониманием относительно того, как, почему и когда React повторно рендерит компоненты и каким образом применение контекста и React-Redux влияет на время и объем повторного рендеринга. С десяток раз понабивав на клавиатуре различные вариации ответов на эти вопросы, я подумал, что имеет смысл составить одно общее пояснение и при каждом удобном случае ссылаться на него. Учтите, что вся собранная здесь информация уже гуляет по сети и рассматривалась в ряде других замечательных статей и публикаций в блогах. Некоторые из них перечислены в качестве справки в конце оригинальной публикации, в разделе Further Information. Собрать разрозненные сведения в единую картину бывает нелегко, поэтому я надеюсь, что моя статья поможет кому-то разобраться в теме.
Что такое рендеринг?
Рендеринг — это процесс, в рамках которого React опрашивает ваши компоненты, требуя от них актуальное описание той секции пользовательского интерфейса, за которую они отвечают, основываясь на текущей комбинации пропсов ( props ) и состояния ( state ).
Обзор процесса рендеринга
React начинает процесс рендеринга с корня дерева компонентов и циклически спускается вниз, чтобы найти все компоненты, помеченные как требующие обновления. Для каждого помеченного компонента React вызывает либо classComponentInstance.render() (для классовых компонентов), либо FunctionComponent() (для функциональных компонентов) и сохраняет результат рендеринга.
Результат рендеринга компонентов обычно представлен в виде JSX-кода, который затем компилируется и развертывается как JS-код, принимая вид серии вызовов React.createElement() . Функция createElement возвращает React-элементы, представляющие собой простые JS-объекты, описывающие желаемую структуру пользовательского интерфейса. Пример:
Собрав результаты рендеринга всего дерева компонентов, React делает сравнение с новым деревом объектов (его часто называют «виртуальной DOM») и составляет список всех изменений, которые нужно внести в «настоящую» DOM, чтобы привести ее к желаемому в данный момент виду. Процесс сопоставления двух деревьев и вычисления разницы между ними называется согласованием.
Затем React одним махом применяет все рассчитанные изменения к DOM в синхронном режиме.
Примечание. Команда разработчиков React в последние годы старается отойти от термина «виртуальная DOM». Вот что об этом говорит Ден Абрамов (Dan Abramov):
Было бы здорово, если бы мы могли отказаться от термина «виртуальная DOM». В нем был смысл в 2013 году, когда люди предполагали, что React создает заново DOM-узлы при каждом рендеринге. Но теперь такие предположения — редкость. «Виртуальная DOM» звучит как какой-то хитрый механизм для обхода проблем с DOM. Но идея React совсем не про это.React исповедует принцип «UI как значение» и обращается с UI, как будто речь идет о строке или массиве. UI можно сохранить в переменной, передать куда-то, применять к нему управление потоком исполнения JavaScript и т. д. В этих возможностях и заключается вся суть, а не в том, что мы путем хитрых сравнений пытаемся сократить число изменений в DOM.И далеко не всегда речь идет об изменениях в DOM, например не имеет отношения к DOM. Концептуально такая запись означает ленивый вызов функции: Message.bind(null, < recipientId: 10 >) .
Этапы рендеринга и фиксации
Команда разработчиков React разделила этот процесс на два этапа:
этап рендеринга (render phase) — рендеринг всех компонентов и вычисление изменений;
этап фиксации (commit phase) — процесс применения изменений к DOM.
Как только React обновит DOM на этапе фиксации, он соответствующим образом актуализирует все рефы (refs), чтобы они указывали на запрошенные DOM-узлы и экземпляры компонентов. Затем он синхронно выполняет методы жизненного цикла компонентов componentDidMount и componentDidUpdate и хуки useLayoutEffect.
После небольшого тайм-аута React выполняет все хуки useEffect. Этот момент также известен как этап пассивных эффектов (passive effects).
Ознакомиться с визуализацией методов жизненного цикла компонентов можно с помощью этой наглядной схемы (к сожалению, на ней пока не отмечено время, которое затрачивается на обработку хуков эффектов).
В грядущем конкурентном режиме React появится возможность ставить на паузу этап рендеринга, давая возможность браузеру обработать события. После этого React может продолжить, сбросить или пересчитать рендеринг. По завершении этапа рендеринга React все равно синхронно запустит этап фиксации на том же шаге.
Важно понимать, что «рендеринг» не означает «обновление DOM», то есть компонент может отрендериться без каких-либо видимых изменений. Когда React рендерит компонент:
после рендеринга компонента может быть возвращен тот же результат, что и в прошлый раз, — изменения при этом не требуются;
в конкурентном режиме React может рендерить компонент несколько раз, но при этом каждый раз сбрасывать результат рендеринга, если другие обновления делают текущие результаты рендеринга неактуальными.
Как в React реализован рендеринг?
Очередь рендеринга
По завершении первичного рендеринга можно воспользоваться одним из нескольких способов, чтобы сообщить React о постановке в очередь повторного рендеринга:
Источник
Что такое рендер или рендеринг
Что такое рендер ( render / rendering )?
Дословный перевод с английского языка слова рендеринг — визуализация или отрисовка. В нашем случае речь идет преобразовании трехмерной сцены в статическую картинку, или секвенцию кадров (секвенция кадров, это тип сохранения множества последовательных кадров если говорить о рендеринге анимации). В программах для создания 3d контента (типа 3ds max, cinema4d, sketch up и др.) рендеринг сцен происходит с помощью математических просчетов. Рендер — соотв. это изображение полученное с помощью математических просчетов на ПК.
Рендеринг — это одна из основных подтем компьютерной 3D-графики, и на практике она всегда связана с остальными. В «графическом конвейере» это последний важный шаг, дающий окончательный вид любой 3d сцене. С возрастающей потребностью компьютерной графики начиная с 1970-х годов, она стала более отчетливым предметом.
Сфера применения
Рендеринг сцен используется в: компьютерных видеоиграх, симуляторах, фильмах, рекламных роликах, телевизионных спецэффектах и архитектурной 3D визуализации. Каждая сфера деятельности использует различный баланс функций и методов просчета. Рассмотрим пару примеров применения рендеринга более детально:
В этой рекламе производитель заменил настоящую пачку чипсов на 3d модель с последующим рендером. Это позволило сэкономить много времени при производстве рекламного ролика на разные рынки сбыта. Поскольку пачка чипсов для разных стран будет выглядеть по-разному, нет необходимости снимать сотни дублей с разными вариантами пачки. Достаточно одного ролика, а пачку теперь можно сделать любую.
Теперь на телеэкране реальным можно сделать все и всех. Нет необходимости в макетах, манекенах, париках, гриме. 3d модель с последующим рендерингом экономит время и средства необходимые на производство спец-эффектов.
Рендер студии Viarde, сделанный для одной из мебельных фабрик. Производителям мебели, света, техники т.п., больше нет необходимости оплачивать дорогостоящие фото студии, чтобы наилучшим образом представить свои продукты. За несколько дней и с намного меньшей стоимостью это сделают студии занимающиеся 3d визуализацией.
Системы рендеринга
Системы рендеринга которые используются 3D редакторами для просчета (отрисовки) визуализации бывают встроенные в программу или внешние подключаемые (устанавливаться отдельно). Чаще внешние системы рендеринга имеют лучше качество визуализации чем встроенные, потому что они разрабатываться не зависимо от 3D редактора, и команда разработчиков работает только над усовершенствованием своего продукта не отвлекаясь на работу с 3D редактором. У команд разрабатывающих внешние рендеры больше времени и возможностей на то, чтобы сделать свой продукт лучшим на рынке. Но из-за этого чаще всего, в отличие от встроенных рендер систем за них придется заплатить дополнительно.
Внутри рендеринг представляет собой тщательно разработанную программу, основанную на выборочной смеси дисциплин, связанных с: физикой света, визуальным восприятием, математикой и разработкой программного обеспечения.
В случае 3D-графики рендеринг может выполняться медленно, как в режиме предварительного рендеринга (pre-rendering), так и в режиме реального времени (real time rendering).
Предварительный рендеринг — это метод визуализации который используется в средах, где скорость не имеет значения, а вычисления изображения выполняются с использованием многоядерных центральных процессоров, а не выделенного графического оборудования. Эта техника рендеринга в основном используется в анимации и визуальных эффектах, где фотореализм должен быть на самом высоком уровне.
Рендеринг в реальном времени: выдающаяся техника рендеринга, используемая в интерактивной графике и играх, где изображения должны создаваться в быстром темпе. Поскольку взаимодействие с пользователем в таких средах является высоким, требуется создание изображения в реальном времени. Выделенное графическое оборудование и предварительная компиляция доступной информации повысили производительность рендеринга в реальном времени.
Рендеринг в архитектурной 3D визуализации
На сегодняшний день самыми популярными и качественными системами для архитектурной 3d визуализации являются Vray и Corona Renderer. Обе системы принадлежат одному разработчику Chaos Group (Болгария).
Vray появился еще в 2000 году и хорошо себя зарекомендовал во многих сферах визуализации благодаря своей гибкости и широкому набору инструментов для включения в рабочий процесс различных студий, будь то анимационные или архитектурные компании.
Основные достоинства V-Ray:
1. Поддерживает сетевой рендер несколькими компьютерами.
2. Очень широкий спектр настроек для разных задач связанных с трехмерной графикой.
3. Огромный набор материалов.
4. Поддерживает большой набор пассов для композинга картинки или видео.
Corona Renderer — это внешний современный высокопроизводительный фотореалистичный рендер, доступный для Autodesk 3ds Max, MAXON Cinema 4D. Разработка Corona Renderer началась еще в 2009 году как сольный студенческий проект Ондржея Карлика в Чешском техническом университете в Праге. С тех пор Corona превратилась в коммерческий проект, работающий полный рабочий день, после того как Ондржей основал компанию вместе с бывшим художником компьютерной графики Адамом Хотови и Ярославом Крживанеком, доцентом и исследователем в Карловом университете в Праге. В августе 2017 года компания стала частью Chaos Group, что позволило дальнейшее расширение и рост. Несмотря на свой молодой возраст, Corona Renderer стал очень конкурентноспособным рендером, способным создавать высококачественные результаты.
Главное достоинство Corona Renderer это очень реалистичная визуализация при простых настройках системы. Она отлично подойдет для новичков, перед которыми стоят простые задачи.
Скорость рендера
Рендер системы при работе как все остальные программы установленные на компьютер требует для просчета изображения определенные ресурсы вашего ПК. В основном требуется мощность процессора и количество оперативной памяти. Такие рендер системы называются CPU Rendering. Есть еще GPU Rendering, это рендер системы просчитывающие изображения с помощью видеокарты ( процессора ). Например Vray имеет возможность рендерить и CPU и GPU.
Время рендеринга зависит от некоторых основных факторов: сложности сцены, количества источников света, наличия высокополигональных моделей, прозрачных или отражающих материалов.
Поэтому рендеринг требует больших мощностей. Обычный офисный ПК не подойдет для этой задачи. Если вы собираетесь рендерить, вам нужна особая сборка компьютера, что бы этот процесс проходил быстро. Все рендер системы имеют разные настройки, где-то больше где, то меньше. Их можно менять что бы получить картинку быстрее, но при этом придется экономить на ее качестве.
Лучший способ для того чтобы, сократить время просчета картинки это использовать сетевой рендеринг или готовую рендер ферму в интернете. Можно распределить рендер между разными компьютерами через локальную сеть или интернет. Для этого все компьютеры участвующие в процессе должны иметь такую же программу для рендеринга, такой же 3д редактор и такие же плагины, как и основной компьютер с которого запускается рендер.
История и основы вычислительных процессов рендеринга
За многие годы разработчики исследовали многие алгоритмы рендеринга. Программное обеспечение, используемое для рендеринга, может использовать ряд различных методов для получения конечного изображения. Отслеживание и просчет каждого луча света в сцене было бы непрактичным и потребовало бы огромного количества времени. Даже отслеживание и просчет части лучей, представляет собой достаточно большой обьем для получения изображения и занимает слишком много времени, если сэмплы (сэмпл — просчет одного луча света) не ограничены разумным образом.
Таким образом, появилось четыре «семейства» более эффективных методов моделирования переноса света: растеризация, включая scanline rendering, рассматривает объекты в сцене и проецирует их для формирования изображения без возможности генерирования эффекта перспективы точки обзора; При Ray casting сцена рассматривается как наблюдаемая с определенной точки зрения, вычисляя наблюдаемое изображение, основываясь только на геометрии и основных оптических законах интенсивности отражения, и, возможно, используя методы Монте-Карло для уменьшения артефактов; radiosity использует — элементную математику для моделирования диффузного распространения света от поверхностей; ray tracing аналогична ray casting, но использует более совершенное оптическое моделирование и обычно использует методы Монте-Карло для получения более реалистичных результатов со скоростью, которая часто на несколько порядков медленнее.
Самое современное программное обеспечение сочетает в себе два или более методов просчета света для получения достаточно хороших результатов при разумных затратах времени.
Scanline rendering и растеризация
Высокоуровневое представление изображения обязательно содержит элементы, отличные от пикселей. Эти элементы называются примитивами. Например, на схематическом рисунке отрезки и кривые могут быть примитивами. В графическом пользовательском интерфейсе окна и кнопки могут быть примитивами. В 3D-рендеринге треугольники и многоугольники в пространстве могут быть примитивами.
Если pixel-by-pixel подход к визуализации нецелесообразен или слишком медленен для какой-либо задачи, тогда primitive-by-primitive подход к визуализации может оказаться полезным. Здесь каждый просматривает каждый из примитивов, определяет, на какие пиксели изображения он влияет, и соответственно модифицирует эти пиксели. Это называется растеризацией, и это метод рендеринга, используемый всеми современными видеокартами.
Растеризация часто быстрее, чем pixel-by-pixel рендеринг. Во-первых, большие области изображения могут быть пустыми от примитивов; Растеризация будет игнорировать эти области, но рендеринг pixel-by-pixel должен проходить через них. Во-вторых, растеризация может улучшить когерентность кэша и уменьшить избыточную работу, используя тот факт, что пиксели, занятые одним примитивом, имеют тенденцию быть смежными в изображении. По этим причинам растеризация обычно является подходящим выбором, когда требуется интерактивный рендеринг; однако, pixel-by-pixel подход часто позволяет получать изображения более высокого качества и является более универсальным, поскольку он не зависит от такого количества предположений об изображении, как растеризация.
Растеризация существует в двух основных формах, не только когда визуализируется вся грань (примитив), но и когда визуализируются все вершины грани, а затем пиксели на грани, которые лежат между вершинами, визуализированными с помощью простого смешивания каждого цвета вершины с следующим. Эта версия растеризации обогнала старый метод, поскольку позволяет графике течь без сложных текстур. Это означает, что вы можете использовать более сложные функции taxing shading видеокарты и при этом добиться лучшей производительности, потому что вы освободили место на карте, так как сложные текстуры не нужны. Иногда люди используют один метод растеризации на одних гранях, а другой метод — на других, основываясь на угле, под которым это грань встречается с другими соединенными гранями, это может увеличить скорость и не немного снизить общий эффект изображений.
Ray casting
Ray casting в основном используется для моделирования в реальном времени, такого как те, которые используются в трехмерных компьютерных играх и мультипликационных анимациях, где детали не важны или где более эффективно вручную подделывать детали, чтобы получить лучшую производительность на этапе вычислений. Обычно это тот случай, когда нужно анимировать большое количество кадров. Результаты имеют характерный «плоский» внешний вид, когда никакие дополнительные приемы не используются, как если бы все объекты на сцене были окрашены матовым покрытием или слегка отшлифованы.
Моделируемая геометрия анализируется попиксельно (pixel-by-pixel), построчно (line by line), с точки зрения наружу, как если бы лучи отбрасывались от точки взгляда. Там, где объект пересекается, значение цвета в точке может быть оценено с использованием нескольких методов. В самом простом случае значение цвета объекта в точке пересечения становится значением этого пикселя. Цвет можно определить по текстурной карте. Более сложный метод заключается в изменении значения цвета с помощью коэффициента освещения, но без расчета отношения к моделируемому источнику света. Чтобы уменьшить артефакты, количество лучей в слегка разных направлениях может быть усреднено.
Может быть дополнительно использовано грубое моделирование оптических свойств: обычно очень простое вычисление луча от объекта к точке зрения. Другой расчет сделан для угла падения световых лучей от источника(ов) света. И из этих и указанных интенсивностей источников света вычисляется значение пикселя. Или можно использовать освещение, построенное по алгоритму radiosity. Или их сочетание.
Radiosity
Radiosity — это метод, который пытается симулировать способ, которым отраженный свет, вместо того, чтобы просто отражаться от другой поверхности, также освещает область вокруг него. Это обеспечивает более реалистичное затенение и, кажется, лучше отражает «атмосферу» внутренней сцены. Классическим примером является способ, которым тени «обнимают» углы комнат.
Оптическая основа симуляции состоит в том, что некоторый рассеянный свет из данной точки на данной поверхности отражается в большом спектре направлений и освещает область вокруг него.
Техника симуляции может варьироваться по сложности. Многие изображения имеют очень приблизительную оценку радиуса, просто слегка освещая всю сцену с помощью фактора, известного как окружение. Однако, когда расширенная оценка Radiosity сочетается с высококачественным алгоритмом Ray tracing, изображения могут демонстрировать убедительный реализм, особенно для интерьерных сцен.
В расширенной симуляции radiosity рекурсивные, конечно-элементные алгоритмы «отражают» свет назад и вперед между поверхностями в модели, пока не будет достигнут некоторый предел рекурсии. Таким образом, окраска одной поверхности влияет на окраску соседней поверхности, и наоборот. Результирующие значения освещенности по всей модели (иногда в том числе для пустых пространств) сохраняются и используются в качестве дополнительных входных данных при выполнении расчетов в модели наведения луча или трассировки лучей.
Из-за итеративного/рекурсивного характера техники сложные объекты особенно медленно подражают. Расширенные расчеты radiosity могут быть зарезервированы для расчета атмосферы комнаты, от света, отражающегося от стен, пола и потолка, без изучения вклада, который сложные объекты вносят в radiosity, или сложные объекты могут быть заменены в вычислении radiosity более простым объекты одинакового размера и текстуры.
Если в сцене наблюдается незначительная перегруппировка объектов radiosity, одни и те же данные radiosity могут повторно использоваться для ряда кадров, что делает radiosity эффективным способом улучшения плоскостности приведения лучей без серьезного влияния на общее время рендеринга на кадр. Из-за этого, radiosity стал ведущим методом рендеринга в реальном времени, и был использован для начала и создания большого количества известных недавних полнометражных анимационных 3D-мультфильмов.
Ray tracing
Ray tracing является продолжением той же технологии, которая была разработана при Scanline и Ray casting. Как и те, он хорошо обрабатывает сложные объекты, и объекты могут быть описаны математически. В отличие от Scanline и Ray casting, Ray tracing почти всегда является методом Монте-Карло, который основан на усреднении числа случайно сгенерированных образцов из модели.
В этом случае сэмплы представляют собой воображаемые лучи света, пересекающие точку обзора от объектов в сцене. Это в первую очередь полезно, когда сложный и точный рендеринг теней, преломление или отражение являются проблемами.
В конечном итоге, при качественном рендеринге работы с трассировкой лучей несколько лучей обычно снимаются для каждого пикселя и прослеживаются не только до первого объекта пересечения, но, скорее, через ряд последовательных «отскоков», используя известные законы оптики, такие как «угол падения равен углу отражения» и более продвинутые законы, касающиеся преломления и шероховатости поверхности.
Как только луч либо сталкивается с источником света, или, более вероятно, после того, как было оценено установленное ограничивающее количество отскоков. Тогда поверхностное освещение в этой конечной точке оценивается с использованием методов, описанных выше, и изменения по пути через различные отскоки оцениваются для оценить значение, наблюдаемое с точки зрения. Это все повторяется для каждого сэмпла, для каждого пикселя.
В некоторых случаях в каждой точке пересечения может быть создано несколько лучей.
Как метод грубой силы, Ray tracing была слишком медленной, чтобы рассматривать ее в режиме реального времени, и до недавнего времени она была слишком медленной, чтобы даже рассматривать короткие фильмы любого уровня качества. Хотя она использовалась для последовательностей спецэффектов и в рекламе, где требуется короткая часть высококачественного (возможно, даже фотореалистичного) материала.
Однако усилия по оптимизации для уменьшения количества вычислений, необходимых для частей работы, где детализация невелика или не зависит от особенностей трассировки лучей, привели к реалистической возможности более широкого использования Ray tracing. В настоящее время существует некоторое оборудование с аппаратной ускоренной трассировкой лучей, по крайней мере, на этапе разработки прототипа, и некоторые демонстрационные версии игр, в которых показано использование программной или аппаратной трассировки лучей в реальном времени.
Читайте также: Лучший компьютер для 3D моделирования и рендера |
Пара интересных фактов про рендеринг
Например фильм «Аватар» Джеймса Камерона рендерился на 34 стойках HP с 32 блейдами HP Proliant BL2x220c в каждой 40 000 процессорных ядер и 104 Тб RAM. При такой мощности на один кадр уходило около 50-ти часов.
А известная мультипликационная компания Pixar, которая сделала такие мультфильмы как «Волли» и «Тачки», разработала для своих проектов собственную рендер систему которая называется Pixars RenderMan. Этот рендер направлен на быстрый просчет сложных анимационных эффектов, таких как: вода, облака, шерсть, волосы и другое.
С каждым днем рендер системы используются все больше в разных сферах деятельности. Для фильмов, мультфильмов, архитектуры, рекламы, промышленности, автомобилестроения и многие другое. Так что если вы видите где, то статическое изображение или анимацию, вполне возможно что это результат рендеринга.
Источник