Что значит искусственный разум

Искусственный интеллект: краткая история, развитие, перспективы

Сейчас технологии развиваются с немыслимой скоростью. Ранее те возможности, что, казалось бы, были доступны только профессиональным ученым, в современной жизни доступны каждому. Один из подобных прорывов – искусственный интеллект, прочно обосновавшийся во многих сферах человеческой жизни.

Сегодня поговорим о том, что такое ИИ, как он возник, где применяется, а также чем он отличается от человеческого разума.

Что представляет собой искусственный интеллект

Искусственный интеллект – это свойство интеллектуальной системы выполнять те функции и задачи, которые обычно характерны для разумных существ. Это может быть проявление каких-то творческих способностей, склонность к рассуждению, обобщение, обучение на основании полученного ранее опыта и так далее.

Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.

История возникновения и развития искусственного интеллекта

Впервые термин artificial intelligence (с английского переводится как «искусственный интеллект») был упомянут в 1956 году Джоном МакКарти, основателем функционального программирования и изобретателем языка Lisp, на конференции в Университете Дартмута.

Однако сама идея подобной системы была сформирована в 1935 году Аланом Тьюрингом. Ученый дал описание абстрактной вычислительной машине, состоящей из безграничной памяти и сканера, перемещающегося вперед и назад по памяти. Однако позднее, в 1950 году, он предложил считать интеллектуальными те системы, которые в общении не будут отличаться от человека.

Читайте также:  Скрестить ужа с ежом что значит

Тогда же Тьюринг разработал эмпирический тест для оценки машинного интеллекта. Он показывает, насколько искусственная система продвинулась в обучении общению и удастся ли ей выдать себя за человека.

Самая ранняя успешная программа искусственного интеллекта была создана Кристофером Стрейчи в 1951 году. А уже в 1952 году она играла в шашки с человеком и удивляла зрителей своими способностями предсказывать ходы. По этому поводу в 1953 году Тьюринг опубликовал статью о шахматном программировании.

В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.

Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.

Отличие ИИ от нейросетей и машинного обучения

Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.

Искусственный интеллект, как мы помним, является свойством сложных систем выполнять задачи, обычно свойственные человеку. К ИИ часто относят узкоспециализированные компьютерные программы, также различные научно-технологические методы и решения. ИИ в своей работе имитирует человеческий мозг, при этом основывается на прочих логических и математических алгоритмах или инструментах, в том числе нейронных сетях.

Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.

Если сравнивать с человеком, то ИИ подобен головному мозгу, машинное обучение – это один из многочисленных способов обработки поступающих данных и решения назревающих задач, а нейросети соответствуют объединению более мелких, базовых элементов мозга – нейронов.

Разница между искусственным и естественным интеллектом

Сравнивать искусственный и естественный интеллект можно лишь по некоторым общим параметрам. Например, человеческий мозг и компьютер работают по примерно схожему принципу, включающему четыре этапа – кодирование, хранение данных, анализ и предоставление результатов. И естественный, и искусственный разум склонны к самообучению, они решают те или иные задачи и проблемы, используя специальные алгоритмы.

Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.

Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.

С другой стороны, для ИИ создан собственный «IQ-тест», названный в честь Тьюринга. Он помогает определить, насколько хорошо машина обучилась и способна ли она уподобиться в общении человеку. Это своего рода планка для ИИ, установленная людьми. А ведь все больше ученых склоняется к тому, что скоро компьютеры обгонят человечество по всем параметрам… Развитие технологий идет по непредсказуемому сценарию, и вполне допустимо, что так и будет.

Применение ИИ в современной жизни

В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.

Так, одна из наиболее популярных сфер применения ИИ – это Big Data в коммерции. Крупные торговые площадки используют подобные технологии для исследования потребительского поведения. Компания «Яндекс» вообще создает с их помощью музыку. В некоторые мобильные приложения встроены голосовые помощники вроде Siri, Алисы или Cortana. Они упрощают процесс навигации и совершения покупок в сервисе. И не стоит забывать про программы с нейросетями, обрабатывающими фото и видео.

ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…

Люксовые бренды внедряют ИИ в свои системы для анализа потребностей клиентов. Стремительно развивается использование подобных систем в системах здравоохранения, в основном при диагностике заболеваний, разработке лекарств, создании медицинских страховок, проведении клинических исследований и так далее.

Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.

Влияние на различные области

ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.

Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно.

Некоторые ученые отмечают риски внедрения ИИ в повседневную жизнь. Так, британский ученый Стивен Хокинг считал, что создать ИИ, превосходящий человека по всем параметрам, все же удастся, но справиться с ним будет нам не под силу, и людям будет нанесен существенный вред. Илон Маск же считает, что искусственный разум в дальнейшем будет нести куда большую угрозу по сравнении с ядерным оружием.

Перспективы развития искусственного интеллекта

Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.

Заключение

Не так давно, казалось бы, ученые ввели понятие «искусственный интеллект», а чуть больше полвека спустя технология уже находит широкий спрос в самых различных сферах. Сейчас искусственный разум, можно сказать, находится в шаговой доступности для любого человека – компьютер и ноутбук, смартфон и электронные часы, даже многие простейшие приложения работают именно с его помощью. ИИ в самых разных своих проявлениях проник во многие сферы человеческой жизни и прочно обосновался в них.

Возможно, страхи ученых вполне обоснованы? Как знать 🙂

Источник

Искусственный интеллект

Искусственный интеллект – это технология, а точнее направление современной науки, которое изучает способы обучить компьютер, роботизированную технику, аналитическую систему разумно мыслить также как человек. Собственно мечта об интеллектуальных роботах-помощниках возникла задолго до изобретения первых компьютеров.

Людей в середине 50-х годов прошлого столетия сильно поразили возможности вычислительных машин, особенно способности ЭВМ, безошибочно выполнять множество задач одновременно. В головах ученых и писателей сразу возникли фантастические идеи о мыслящих машинах. Именно в этот период начинают зарождаться первые технологии искусственного интеллекта.

Исследования в сфере ИИ ведутся путем изучения умственных способностей человека и переложения полученных результатов в поле деятельности компьютеров. Таким образом, искусственный интеллект получает информацию из самых разных источников и дисциплин. Это и информатика, математика, лингвистика, психология, биология, машиностроение. На основе массива данных с помощью технологии машинного обучения компьютеры пытаются имитировать интеллект человека.

Главные цели ИИ достаточно прозрачны:

  • Создание аналитических систем, которые обладают разумным поведением, могут самостоятельно или под надзором человека обучаться, делать прогнозы и строить гипотезы на основе массива данных.
  • Реализация интеллекта человека в машине – создание роботов-помощников, которые могут вести себя как люди: думать, учиться, понимать и выполнять поставленные задачи.

История развития искусственного интеллекта

Авторство термина «искусственный интеллект» приписывают Джону Маккарти – основоположнику программирования, изобретателю языка Лисп. В 1956 году будущий лауреат престижной премии Тьюринга продемонстрировал в университете Карнеги-Меллон прототип программы на основе ИИ.

Умными роботами человечество начало грезить в первой четверти 20 века. Известный литератор Карел Чапек в 1924 года поставил в лондонском театре пьесу «Универсальные роботы». Представление поразило публику, а слово «робот» прочно вошло в обиход.

В 1943-45 годах закладываются основы для понимания и создания нейронных сетей, а уже в 1950 году Алан Тьюринг публикует в научном издании анализ интеллектуальной шахматной игры. В 1958 году появляется первый язык программирования искусственного интеллекта – Лисп.

В период с 1960 по 1970 ряд ученых доказали, что компьютеры способны понимать естественный язык на достаточно хорошем уровне. В 1965 году разработали Элизу – первого робота-помощника, который мог говорить на английском языке. В эти же годы направление ИИ стало привлекать правительственные и военные организации США, СССР и других стран. Так Министерство обороны США уже к 70-м годам запустило проект виртуальных уличных карт – прототип GPS.

В 1969 году ученые Стэнфордского университета создали Шеки – робота с ИИ, способного самостоятельно перемещаться, воспринимать некоторые данные и решать несложные задачи.

В Эдинбургском университете четырьмя годами позже (1973) был создан робот Фредди – это шотландский представитель семейства ИИ мог использовать компьютерное зрение для того, чтобы находить и собирать разные модели.

В СССР искусственный интеллект также развивался стремительно. Академики А.И. Берг и Г.С.Поспелов в 1954-64 годах создают программу «АЛПЕВ ЛОМИ», которая автоматически доказывает теоремы. В эти же годы советскими учеными был разработан алгоритм «Кора», который моделирует деятельность человеческого мозга при распознавании образов. В 1968 году Турчиным В.Ф создается символьный язык обработки данных РЕФАЛ.

80-е годы XX века стали прорывными для ИИ. Учеными были разработаны обучающие машины – интеллектуальные консультанты, которые предлагали варианты решений, умели самообучаться на начальном уровне, общались с человеком на ограниченном, но уже естественном языке.

В 1997 году создали известную шахматную программу – компьютер «Дип Блю», который обыграл чемпиона мира по шахматам Гарри Каспарова. В эти же годы Япония приступает к разработке проекта компьютера 6-го поколения на основе нейросетей.

Интересен факт, что в 1989 году другая шахматная программа Deep Thought обыграла гроссмейстера международного уровня Бента Ларсена. После этого поединка машины и человека, Гарри Каспаров заявил:

«Если интеллектуальная машина сможет переиграть в шахматы лучшего из лучших, значит, она сможет писать самую лучшую музыку, сочинять самые лучшие книги. Я не могу в это поверить. Когда я узнаю, что ученые создали компьютер с рейтингом интеллекта 2800, то есть равному моему, я сам вызову машину на шахматный поединок, чтобы защитить человеческую расу»

В 2000-е годы вновь появился интерес к робототехнике. ИИ активно внедряется в космическую отрасль, а также осваивается в бытовой сфере. Появляются системы умного дома, «продвинутые» бытовые устройства. Роботы Кисмет и Номад исследуют районы Антарктиды.

С 2008 начинается эра технологической сингулярности, которая по расчетам экспертов должна выйти в зенит в 2030 году. Начинается интеграция человека с вычислительными машинами, увеличиваются возможности человеческого мозга, появляются биотехнологии.

Принципы ИИ

Прежде чем описываться технологические принципы, без которых немыслимо развитие искусственного интеллекта, стоит познакомиться с этическими законами робототехники. Их в 1942 году вывел Айзек Азимов в своём романе «Хоровод»:

  • Робот или система с искусственным интеллектом не может навредить человеку своим действием или же своим бездействием допустить, чтобы человеку был приченен вред.
  • Робот должен повиноваться приказам, которые получает от человека, кроме тех, которые противоречат Первому закону.
  • Робот должен заботиться о своей безопасности, если это не противоречит Первому и Второму Законам.

До выхода в свет романа Азимова, искусственный интеллект ассоциировался с образом Франкенштейна Мэри Шелли. Искусственно созданное подобие человека с разумом восстает против людей. Эту же страшилку перенесли и в знаменитый блокбастер Голливуда «Терминатор».

Интересен факт, что в 1986 году Айзек Азимов дописал еще один пункт к законам робототехники. Писатель предпочел назвать его «нулевым»:

0. Робот не может навредить человеку, если только не докажет, что в конечном итоге это (вред) будет полезно для всего человечества.

Разобравшись с этическими законами, перейдем к технологическим принципам искусственного интеллекта:

    Машинное обучение (МО) – принцип развития ИИ на основе самообучающихся алгоритмов. Участие человека при таком подходе ограничивается загрузкой в «память» машины массива информации и постановкой целей. Существует несколько методик МО: обучение с учителем – человек задает конкретную цель, хочет проверить гипотезу или подтвердить закономерность. Обучение без учителя – результат интеллектуальной обработки данных неизвестен – компьютер самостоятельно находит закономерности, учится думать как человек. Глубокое обучение – это смешанный способ, главное отличие в обработке больших массивов данных и использование нейросетей.

Нейросеть – математическая модель, которая имитирует строение и функционирование нервных клеток живого организма. Соответственно в идеале – это самостоятельно обучаемая система. Если перенести принцип на технологическую основу, то нейросеть – это множество процессоров, которые выполняют какую-то одну задачу в масштабном проекте. Другими словами суперкомпьютер – это сеть из множества обычных компьютеров.

  • Глубокое обучение относят в отдельный принцип ИИ, так как этот метод используется для обнаружения закономерностей в огромных массивах информации. Для такой непосильной человеку работы, компьютер использует усовершенствованные методики.
  • Когнитивные вычисления – одно их направлений ИИ, которое изучает и внедряет процессы естественного взаимодействия человека и компьютера, наподобие взаимодействия между людьми. Цель технологии искусственного интеллекта заключается в полной имитации человеческой деятельности высшего порядка – речь, образное и аналитическое мышление.
  • Компьютерное зрение – это направление ИИ используется для распознавания графических и видеоизображений. Сегодня машинный интеллект может обрабатывать и анализировать графические данные, интерпретировать информацию в соответствии с окружающей обстановкой.

  • Синтезированная речь. Компьютеры уже могут понимать, анализировать и воспроизводить человеческую речь. Мы уже можем управлять программами, компьютерами и гаджетами с помощью речевых команд. Например, Siri или Google assistant, Алиса в Яндексе и другие.
  • Кроме того, трудно представить существование искусственного интеллекта без мощных графических процессоров, которые являются сердцем интерактивной обработки данных. Для интеграции ИИ в различные программы и устройства необходима технология API – программные интерфейсы приложений. Используя API можно без труда добавлять технологии искусственного интеллекта в любые компьютерные системы: домашняя безопасность, умный дом, оборудование на ЧПУ и прочее.

    Сфера использования ИИ


    Искусственный интеллект постепенно приходит во все отрасли человеческой деятельности, делая обычные программные комплексы интеллектуальными:

    • Медицина и здравоохранение. Компьютерные системы ведут учет пациентов, помогают в расшифровке диагностических результатов. Например, снимки УЗИ, рентгена, томографа и другого медоборудования. Интеллектуальные системы даже могут по наличию признаков у пациента определять болезнь, предлагать оптимальные варианты лечения. В магазине приложений Гугла можно найти программы-помощники здорового образа жизни. Эти приложения считывают пульс и температуру тела при касании дисплея телефона палицами, чтобы определить уровень стресса человека и подсказать, как его снизить.
    • Розничные продажи в онлайн-магазинах. Многим уже знакома релевантная реклама Гугла и Яндекса. С её помощью ритейлеры предлагают товары и услуги в соответствии с интересами пользователя. Например, вы посещали интернет-магазин купальников, какие-то модели рассматривали, читали характеристики и прочее. Покинув магазин, вы некоторое время будете видеть рекламу купальников на других сайтах. По схожему принципу работают блоки «похожие товары» в интернет-магазинах. Системы аналитики изучают поведенческие метрики пользователя, определяют его покупательские пристрастия и показывают релевантные (по их мнению) предложения.
    • Политика. Интеллектуальные машины помогли Барак Обаме выиграть вторые президентские выборы. Для своей кампании тогда ещё действующий президент США нанял лучшую команду профессионалов в области анализа данных. Специалисты использовали возможности интеллектуальных машин, чтобы рассчитать наилучший день, штат и аудиторию для выступлений Обамы. По оценкам специалистов это дало перевес в 10-12%.
    • Промышленность. Искусственный интеллект может анализировать данные с разных производственных участков и регулировать нагрузку на оборудование. Кроме того, интеллектуальные машины используются для прогнозирования спроса в разных отраслях промышленности.
    • Игровая индустрия, образование. Искусственный интеллект активно применяется создателями игр. Умные машины, робототехника постепенно внедряются в образовательные процессы большинства государств.

    Основные проблемы ИИ


    Как вы понимаете возможности искусственного интеллекта на данной стадии развития не безграничны. Перечислим главные трудности:

    1. Обучение машин возможно только на основе массива данных. Это означает, что любые неточности в информации сильно сказываются на конечном результате.
    2. Интеллектуальные системы ограничены конкретным видом деятельности. То есть умная система, настроенная на выявление мошенничества в сфере налогообложения, не сможет выявлять махинации в банковской сфере. Мы имеем дело с узкоспециализированными программами, которым ещё далеко до многозадачности человека.
    3. Интеллектуальные машины не являются автономными. Для обеспечения их «жизнедеятельности» необходима целая команда специалистов, а также большие ресурсы.

    Резюме

    Мы познакомились с понятием, что такое искусственный интеллект. Изучили основные принципы: этические и технологические. Рассмотрели главные препятствия на пути развития ИИ. Искусственный интеллект тесно связан с развитием компьютерной техники, а также таких наук как математика, статистика, комбинаторика и других.

    Источник

    Оцените статью