Что значит инвертировать двоичное число

Что значит инвертировать двоичное число

Как инвертировать двоичное число, тобишь перевести 0 в 1 и 1 в 0. Есть ли какой-нибудь стандартный способ?


begin. end © ( 2005-11-24 10:12 ) [1]

Используйте оператор not.


Mishenka ( 2005-11-24 10:19 ) [2]

Что-то я не совсем врубился. Есть к примеру число 1100101011 как получить 0011010100 ?


Separator © ( 2005-11-24 10:22 ) [3]

А где ты видел такое число?
Логически оперотор not 1100101011 даст 0011010100


tesseract © ( 2005-11-24 10:37 ) [4]

число xor 1111111111 тоже можно использовать. (только размерность должна совпадать).

Источник

Обратный и дополнительный коды двоичных чисел

Пример №2 . Представить двоичное число 101.102 в нормализованном виде, записать в 32-битом стандарте IEEE754.
Таблица истинности

Прямой код числа кодирует только знаковую информацию и используется для хранения положительных и отрицательных чисел в ЭВМ. Прямой код двоичного числа совпадает по изображению с записью самого числа, но в знаковом разряде ставится 0, если число положительное и, 1 если число отрицательное.
Обратный и дополнительный коды используются для выполнения всех арифметических операций через операцию сложения.
Следует помнить, что положительные числа в обратном и дополнительном коде совпадают с прямым кодом.
1) Прямой код числа (кодируется только знаковая информация), “+”=0; ”-”=1.
Для прямого кода возможны два представления нуля, машинный положительный ноль, т.е. +0,110=0,110, машинный отрицательный ноль, т.е. -0,111=1,111.

Пример перевода
x1=10101-[x1]пр=010101
x2=-11101-[x2]пр=111101
x3=0,101-[x3]пр=0,101
x4=-0,111-[x4]пр=1,111
2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.

3) Дополнительный код числа, имеет такое же назначение, как и обратный код числа. Формируется по следующим правилам: положительные числа в дополнительном коде выглядят также как и в обратном и в прямом коде, т.е. не изменяются. Отрицательные числа кодируются следующим образом: к обратному коду отрицательного числа (к младшему разряду) добавляется 1, по правилу двоичной арифметики.

Пример перевода
x1=10101-[x1]доп=010101
x2=-11101-[x2]обр=100010+1-[x2]доп=100011
x3=0,101-[x3]доп=0,101
x4=-0,111-[x4]обр=1,000+1-[x4]доп=1,001
Для выявления ошибок при выполнении арифметических операций используются также модифицированные коды: модифицированный прямой; модифицированный обратный; модифицированный дополнительный, для которых под код знака числа отводится два разряда, т.е. “+”=00; ”-”=11. Если в результате выполнения операции в знаковом разряде появляется комбинация 10 или 01 то для машины это признак ошибки, если 00 или 11 то результат верный.

Как определить, положительное или отрицательное число? Знак числа определяет старший бит: 0 — положительное число, 1 — отрицательное число. Например, для числа 1,001 сразу можно определить, что оно отрицательное (меньше нуля).

Источник

Как инвертировать двоичное число в python

Реверсивные биты целого числа Python

Учитывая десятичное целое число (например, 65), как можно обратить вспять основные биты в Python? то есть . следующая операция:

Кажется, что эту задачу можно разбить на три этапа:

  1. Преобразовать десятичное целое в двоичное представление
  2. Поменять биты
  3. Преобразовать обратно в десятичную

Шаги № 2 и 3 кажутся довольно простыми (см. это и это ТАК вопрос, связанный с шагом № 2), но я застрял на шаге № 1. Проблема с шагом № 1 — получение полного десятичного представления с заполнением нулями (т. Е. 65 = 01000001, а не 1000001).

Я искал вокруг, но я не могу ничего найти.

9 ответов

Вы можете указать любую длину заполнения вместо 8. Если вы хотите стать действительно модным,

Позволяет указать ширину программно.

Вы можете проверить i-й бит числа, используя сдвиг и маску. Например, бит 6 из 65 равен (65 >> 6) & 1 . Вы можете установить бит аналогичным образом, сместив 1 раз вправо влево. Это понимание дает вам такой код (который меняет x в поле n битов).

Обычно необходимо применять эту операцию к массиву чисел , а не к одному. Для увеличения скорости, вероятно, лучше использовать массив NumPy. Есть два решения.

Х1.34 быстрее, чем второе решение:

Более медленное, но более простое для понимания (на основе решения, предложенного Судипом Гимиром):

Еще один способ сделать это — перебрать биты с обоих концов и поменять местами друг друга. Это я узнал из книги питона EPI.

Если вам нужно больше скорости, вы можете использовать методику, описанную в http://leetcode.com/2011/08/reverse-bits.html

Нам не нужно преобразовывать целое число в двоичное, поскольку целые числа на самом деле двоичные в Python.

Идея реверса похожа на реверсирование целых чисел в пространстве.

Для каждого цикла исходное число сбрасывает самый правый бит (в двоичном виде). Мы получаем этот самый правый бит и умножаем 2 ( 10101)
Можно ли хранить биты в каком-то другом виде, кроме строк?

Источник

Прямой, дополнительный и обратный коды

Прямой, дополнительный и обратный код числа (создан по запросу).

Далее идет калькулятор, который переводит введенное положительное или отрицательное целое число в двоичный код, а также выводит обратный код этого числа и его дополнительный код. Под калькулятором, как водится, немного теории.

Обновление: Из комментариев становится ясно, что люди не вполне понимают, что делает этот калькулятор. Точнее, что делал — применял алгоритм вычисления дополнительного кода к любому числу. Люди хотят, чтобы он им просто показывал дополнительный код числа. Ну хорошо — теперь при вводе положительного числа калькулятор показывает представление числа в двоичной форме, ибо для него нет обратного и дополнительного кода, а при вводе отрицательного показывает дополнительный и обратный код.

Прямой, дополнительный и обратный код

Прямой код числа это представление беззнакового двоичного числа. Если речь идет о машинной арифметике, то как правило на представление числа отводится определенное ограниченное число разрядов. Диапазон чисел, который можно представить числом разрядов n равен

Обратный код числа, или дополнение до единицы (one’s complement) это инвертирование прямого кода (поэтому его еще называют инверсный код). То есть все нули заменяются на единицы, а единицы на нули.

Дополнительный код числа, или дополнение до двойки (two’s complement) это обратный код, к младшему значащему разряду которого прибавлена единица

А теперь «зачем, зачем это все?» ©

А это все для удобной работы со знаками. Поскольку я все люблю понимать на примерах, рассказывать я тоже буду на примерах. Итак, предположим, что у нас 4 разряда для работы с двоичными числами. Представить таким образом можно 16 чисел — 0, 1, . 15
00 — 0000
.
15 — 1111

Но если нет знака, убогая получается арифметика. Нужно вводить знак. Чтобы никого не обидеть, половину диапазона отдадим положительным числам (8 чисел), половину — отрицательным (тоже 8 чисел). Ноль, что отличает машинную арифметику от обычной, мы отнесем в положительные числа (в обычной арифметике у нуля нет знака, если не ошибаюсь). Итого, в положительные числа попадают 0. 7, а в отрицательные -1, . -8.

Для различия положительных и отрицательных чисел выделяют старший разряд числа, который называется знаковым (sign bit)
0 в этом разряде говорит нам о том, что это положительное число, а 1 — отрицательное.

С положительными числами все вроде бы понятно, для их представления можно использовать прямой код
0 — 0000
1 — 0001
7 — 0111

А как представить отрицательные числа?

Вот для их представления как раз и используется дополнительный код.
То есть, -7 в дополнительном коде получается так
прямой код 7 = 0111
обратный код 7 = 1000
дополнительный код 7 = 1001

Обратим внимание на то, что прямой код 1001 представляет число 9, которое отстоит от числа -7 ровно на 16, или .
Или, что тоже самое, дополнительный код числа «дополняет» прямой код до , т.е. 7+9=16

И это оказалось очень удобно для машинных вычислений — при таком представлении отрицательного числа операции сложения и вычитания можно реализовать одной схемой сложения, при этом очень легко определять переполнение результата (когда для представления получившегося числа не хватает разрядности)

Пара примеров
7-3=4
0111 прямой код 7
1101 дополнительный код 3
0100 результат сложения 4

-1+7=6
1111 дополнительный код 1
0111 прямой код 7
0110 результат сложения 6

Что касается переполнения — оно определяется по двум последним переносам, включая перенос за старший разряд. При этом если переносы 11 или 00, то переполнения не было, а если 01 или 10, то было. При этом, если переполнения не было, то выход за разряды можно игнорировать.

Примеры где показаны переносы и пятый разряд

00111 прямой код 7
00001 прямой код 1
01110 переносы
01000 результат 8 — переполнение

Два последних переноса 01 — переполнение

-7+7=0
00111 прямой код 7
01001 дополнительный код 7
11110 переносы
10000 результат 16 — но пятый разряд можно игнорировать, реальный результат 0

Два последних переноса 11 з перенос в пятый разряд можно отбросить, оставшийся результат, ноль, арифметически корректен.
Опять же проверять на переполнение можно простейшей операцией XOR двух бит переносов.

Вот благодаря таким удобным свойствам дополнительный код это самый распространенный способ представления отрицательных чисел в машинной арифметике.

Источник

Битовые операции

Введение

Я зык Си иногда называют макроассемблером за его тягу к железу. Если не использовать оптимизацию, можно даже примерно оценить, в какие конструкции на ассемблере преобразуется код программы. Простота и минимализм языка (простоту языка не путать с простотой программирования на языке) привели к тому, что на многих платформах си остаётся единственным высокоуровневым языком программирования. Без обзора побитовых операций, конечно, изучения языка было бы неполным.

Побитовые операции, как понятно из названия, позволяют оперировать непосредственно с битами. Большое количество примеров использования побитовых операций можно найти, например, в книге Генри Уоррена «Алгоритмические трюки для программистов». Здесь мы рассмотрим только сами операции и примитивные алгоритмы.

Побитовые И, ИЛИ, НЕ, исключающее ИЛИ

ЗАМЕЧАНИЕ: здесь и далее в примерах используются 8-битные числа для упрощения записи. Всё это верно и для любых других чисел.

Н апомню для начала, что логические операции И, ИЛИ, исключающее ИЛИ и НЕ могут быть описаны с помощью таблиц истинности

Логический оператор И
X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1
Логический оператор ИЛИ
X Y X OR Y
0 0 0
0 1 1
1 0 1
1 1 1
Логический оператор исключающее ИЛИ
X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 0
Логический оператор НЕ
X NOT X
0 1
1 0

В побитовых (bit-wise) операциях значение бита, равное 1, рассматривается как логическая истина, а 0 как ложь. Побитовое И (оператор &) берёт два числа и логически умножает соответствующие биты. Например, если логически умножить 3 на 8, то получим 0

Так как в двоичном виде 3 в виде однобайтного целого представляет собой

Первый бит переменной c равен логическому произведению первого бита числа a и первого бита числа b. И так для каждого бита.

00000011
00001000 ↓↓↓↓↓↓↓↓
00000000

Соответственно, побитовое произведение чисел 31 и 17 даст 17, так как 31 это 00011111 , а 17 это 00010001

00011111
00010001 ↓↓↓↓↓↓↓↓
00010001

Побитовое произведение чисел 35 и 15 равно 3.

00100011
00001111 ↓↓↓↓↓↓↓↓
00000011

Аналогично работает операция побитового ИЛИ (оператор |), за исключением того, что она логически суммирует соответствующие биты чисел без переноса.

выведет 15, так как 15 это 00001111 , а 11 это 00001011

00001111
00001011 ↓↓↓↓↓↓↓↓
00001111

Побитовое ИЛИ для чисел 33 и 11 вернёт 43, так как 33 это 00100001 , а 11 это 00001011

00100001
00001011 ↓↓↓↓↓↓↓↓
00101011

Побитовое отрицание (оператор

) работает не для отдельного бита, а для всего числа целиком. Оператор инверсии меняет ложь на истину, а истину на ложь, для каждого бита. Например,

Выведет -66, так как 65 это 01000001 , а инверсия даст 10111110

что равно -66. Кстати, вот алгоритм для того, чтобы сделать число отрицательным: для нахождение дополнительного кода числа его надо инвертировать и прибавить к нему единицу.

Исключающее ИЛИ (оператор ^) применяет побитово операцию XOR. Например, для чисел

будет выведено 89, так как a равно 00001100 , а b равно 01010101 . В итоге получим 01011001

Иногда логические операторы && и || путают с операторами & и |. Такие ошибки могут существовать в коде достаточно долго, потому что такой код в ряде случаев будет работать. Например, для чисел 1 и 0. Но так как в си истиной является любое ненулевое значение, то побитовое умножение чисел 3 и 4 вернёт 0, хотя логическое умножение должно вернуть истину.

Операции побитового сдвига

О пераций сдвига две – битовый сдвиг влево (оператор >). Битовый сдвиг вправо сдвигает биты числа вправо, дописывая слева нули. Битовый сдвиг влево делает противоположное: сдвигает биты влево, дописывая справа нули. Вышедшие за пределы числа биты отбрасываются.

Например, сдвиг числа 5 влево на 2 позиции

Сдвиг числа 19 вправо на 3 позиции

00010011 >> 3 == 00000010

Независимо от архитектуры (big-endian, или little-endian, или middle-endian) числа в двоичном виде представляются слева направо, от более значащего бита к менее значащему. Побитовый сдвиг принимает два операнда – число, над которым необходимо произвести сдвиг, и число бит, на которое необходимо произвести сдвиг.

Так как сдвиг вправо (>>) дописывает слева нули, то для целых чисел операция равносильна целочисленному делению пополам, а сдвиг влево умножению на 2. Произвести битовый сдвиг для числа с плавающей точкой без явного приведения типа нельзя. Это вызвано тем, что для си не определено представление числа с плавающей точкой. Однако можно переместить число типа float в int, затем сдвинуть и вернуть обратно

Но мы, конечно же, получим не 5.0f, а совершенно другое число.

Особенностью операторов сдвига является то, что они могут по-разному вести себя с числами со знаком и без знака, в зависимости от компилятора. Действительно, отрицательное число обычно содержит один бит знака. Когда мы будем производить сдвиг влево, он может пропасть, число станет положительным. Однако, компилятор может сделать так, что сдвиг останется знакопостоянным и будет проходить по другим правилам. То же самое и для сдвига вправо.

В данном случае при первом сдвиге всё работает, как и задумано, потому что число без знака. Во втором случае компилятор VSE2013 оставляет знак. Однако если посмотреть на представление этого числа, как беззнакового, сдвиг происходит по другим правилам, с сохранением самого левого бита. В последней строчке, если привести число со знаком к числу без знака, то произойдёт обычный сдвиг, и мы получим в результате положительное число.

Побитовые операторы и операторы сдвига не изменяют значения числа, возвращая новое. Они также как и арифметические операторы, могут входить в состав сложного присваивания

Примеры

1. Напишем функции, которые позволяют определять и изменять определённый бит числа

Для того, чтобы узнать, какой бит (1 или 0) стоит на позиции n, воспользуемся логическим умножением.

Пусть имеется число 9

Нужно узнать, выставлен ли бит на позиции 3 (начиная с нуля). Для этого умножим его на число, у которого все биты равны нулю, кроме третьего:

00001001 & 00001000 = 00001000

Теперь узнаем значение бита в позиции 6

00001001 & 01000000 = 00000000

Таким образом, если мы получаем ответ, равный нулю, то на искомой позиции находится ноль, иначе единица. Чтобы получить число, состоящее из нулей с одним битом на нужной позиции, сдвинем 1 на нужное число бит влево.

Заметьте, что в функции условие записано так

Потому что без скобок сначала будет вычислено равенство нулю и только потом выполнено умножение.

Функцию можно упростить

Функция, которая выставляет бит на n-й позиции в единицу.

Известно, что логическое сложение любого бита с 1 будет равно 1. Так что для установки n-го бита нужно логически сложить число с таким, у которого все биты, кроме нужного, равны нулю. Как получить такое число, уже рассмотрено.

Функция, которая устанавливает бит на n-й позиции в ноль.

Для этого нужно, чтобы все биты числа, кроме n-го, не изменились. Умножим число на такое, у которого все биты равны единице, кроме бита под номером n. Например

0001011 & 1110111 = 0000011

Чтобы получить такую маску, сначала создадим число с нулями и одной единицей, а потом инвертируем его.

Функция, изменющая значение n-го бита на противоположное.

Для этого воспользуемся функцией исключающего или: применим операцию XOR к числу, которое состоит из одних нулей и одной единицы на месте нужного бита.

Битовые флаги

Расммотрим синтетический пример. Пусть у нас есть три логические переменные, и нам нужно вывести определённое значение в зависимости от всех этих переменных сразу. Очевидно, что может быть 2 3 возможных вариантов. Запишем это условие в виде ветвления:

Мы получили 8 ветвей. Пусть теперь нам понадобилось добавить ещё одно условие. Тогда число ветвей удвоится, и программа станет ещё сложней для понимания и отладки. Перепишем пример.

Если каждое из наших логичесих значений сдвинуть на своё число бит влево и логически сложить, то мы получим свою уникальную комбинацию бит в зависимоти от значений a, b и c:

Используем этот подход к нашей задаче и заменим ветвеление на switch:

Этот метод очень часто используется для назначения опций функций в разных языках программирования. Каждый флаг принимает своё уникальное название, а их совместное значение как логическая сумма всех используемых флагов. Например, библиотека fcntl:

Здесь флаг O_RDWR рaвен

00000000000000000000001000000000

и O_APPEND

Источник

Читайте также:  Если опухают ноги это что значит
Оцените статью