- Виды и характеристики химических свойств
- Объекты и задачи предмета
- Электролиты и галогены
- Взаимодействие со спиртами
- Описание металлов
- Химические свойства
- Примеры химических свойств
- См. также
- Примечания
- Полезное
- Смотреть что такое «Химические свойства» в других словарях:
- Химические свойства. Химические свойства характеризуют способность материала к химическим взаимодействиям с другими веществами
Виды и характеристики химических свойств
Объектом химии считается вещество и влияние на него звуковых и магнитных полей. Само понятие имеет массу и бывает в трёх агрегатных состояниях — твёрдом, газообразном и жидком. Для каждого компонента характерны определённые химические свойства. При их вступлении в реакцию получается новое образование, например, нагретый сахар превращается в уголь и воду.
Объекты и задачи предмета
На уроках химии школьники изучают особенности превращения одних веществ в другие. К задачам предмета относится определение, с какими химическими компонентами при определённых условиях реагирует то либо иное вещество, что при этом образуется. Дополнительно изучаются условия, при которых протекают подобные превращения, и методы получения нужного состояния.
Под химсвойствами подразумевается совокупность информации о том, с какими иными компонентами и при каких условиях вступает во взаимодействие данное вещество. Атомы — частицы, которые участвуют в превращениях. При реакции они перегруппировываются. Старые связи между ними разрушаются, но возникают новые.
Для каждого вида атома характерен конкретный химический элемент (ХМ) — совокупность атомов с близкими либо одинаковыми характеристиками. В природе известно до 90 разных ХМ. Учёные в области физики способны создать новые виды атомов, которые отсутствуют на Земле. Такие компоненты называются искусственными. Их число превышает два десятка. У ХМ имеется латинское название и символ из 1−2 букв. От класса соединения зависит, какие химические свойства (ХС) характерны: кислоты, галогены, спирт.
Под ХС понимается способность взаимодействовать с иными компонентами, а также распадаться и диссоциироваться. Главное свойство — электроотрицательность. Чтобы описать реакционную способность, используются некоторые численные значения. Каждое из них зависит от определённых условий измерения.
ХС зависит от структуры молекул, степени их пространственности. Для веществ с одним составом и структурой характерны одинаковые виды химических свойств, кроме реакций с ХМ иной пространственной конфигурации.
Электролиты и галогены
Кислоты участвуют в реакциях с переходом электрона. Химические характеристики, свойственные для образования, зависят от его названия. Электролиты появляются в результате диссоциации водорода, который легко замещается металлами с последующим формированием соли.
Для кислот характерно сообразование гидратированных ионов, которые придают соответствующий вкус и способность изменять цвет. Другое химическое вещество — галоген. В переводе с греческого означает «рождение, происхождение». Компоненты относятся к основной подгруппе VII группы таблицы Менделеева. Им свойственно реагировать с любым простым элементом, кроме неметаллов.
Галогены считаются энергетическими окислителями, поэтому в природе встречаются в качестве соединений. При увеличении номера уменьшается активность галогенов:
Взаимодействуя с металлами, формируется ионная связь, образуется соль. Все представители группы, кроме фтора, взаимодействуя с электроотрицательными компонентами, проявляют восстановительные свойства. Для них характерна высокая окислительная активность. Она уменьшается в процессе перехода от фтора к астату.
Сам фтор (F) считается самым активным галогеном. Он реагирует с любым металлом. Без нагрева он реагирует с неметаллами. Облучение способствует образованию инертного газа. Энергично протекает взаимодействие фтора со сложным веществом. Таким методом окисляется вода, а реакция приобретает взрывной характер.
Аналогичное явление наблюдается при освещении хлора (Cl) с водородом. Первый компонент быстро реагирует со сложными ХМ. При нагреве легко вытесняется йод либо бром из соединения хлора с металлом. При взаимодействии с водой наблюдаются следующие явления:
- растворение хлора;
- частичная реакция;
- образование равновесной смеси веществ.
Cl легко диспропорционируется со щелочами. Бром (Br) способен быстро растворяться в воде, частично реагируя с Н2О, образуя бромную воду.
Йод в воде не растворяется и не окисляется при нагревании. При этом он способен расщепляться в иодидных растворах, образуя комплексные анионы, включая раствор Люголя.
Йод отличается от других ХМ своей активностью. Он не вступает в реакцию со многими неметаллами, а с металлами при нагревании реагирует медленно. Для реакции водорода и йода характерна эндотермичность и сильнообратимость. Учёные доказали, что химическая активность галогенов уменьшается последовательно от F к астату (At). Каждый компонент из ряда вытесняет последующий из его соединений с металлом либо водородом. Любой галоген окисляет галогенид-ион любого из последующих галогенов. В процессе диссоциации формируются протоны, ионы.
Взаимодействие со спиртами
К химическим элементам относятся спирты. Они легко вступают в реакцию с иными компонентами и относятся к гидроксильной группе, для которой характерно наличие углеводородной цепи. Чем она больше, тем сильнее влияет на функциональную группу. При этом снижается полярность связи О-Н.
При разрыве связи реакция протекает медленно. На основе гидроксильной группы наблюдается отрицательный индуктивный эффект. В основе классификации спиртов на группы лежат их химические свойства. Специалисты выделяют воду либо оксид водорода, металлы, простые вещества. Первый компонент представлен в виде прозрачной жидкости без цвета, вкуса и запаха. Его свойства:
- возможность преобразовываться в разные состояния (лёд, пар);
- сильная полярность;
- в природе содержит в себе газы, соли.
Н2О считается самым распространённым растворителем на Земле. Химически вода активна. Её полярные молекулы способствуют образованию гидратов и кристаллогидратов. Н2О при комнатной температуре реагирует со следующими компонентами:
- Активные металлы (натрий, кальций, калий).
- Фтор.
- Соли из слабой кислоты.
- Бор.
При нагревании она вступает в реакцию с магнием и железом, метаном и углём. На основе катализаторов образуется ацетилен, алкен, амидам.
Описание металлов
К простым ХМ относятся металлы. Для них характерны следующие свойства: высокие электро- и теплопроводность, пластичность, блеск, положительное сопротивление. Внешний электронный уровень представлен в виде незначительного числа электронов (максимум три). Вступая в реакцию, они выполняют функции восстановителей, отдавая свои электроны.
С кислородом взаимодействуют все элементы группы, кроме платины и золота. Реакция с серебром возможна, если достигнута высокая температура. Из-за термической неустойчивости оксид серебра не образуется. Перечень элементов, которые появляются на выходе (зависит от названия металла, который участвует в реакции):
Для получения пероксида используется металл. С малоактивным и средним компонентом реакции возникает при нагревании. Взаимодействие с азотом осуществляется на основе максимально активных металлов (АМ). При комнатной температуре взаимодействует только литий, который способствует появлению нитридов. При нагревании серы и железа получается сульфид.
С водородом и углеродом взаимодействуют наиболее АМ. С кислотами металл реагирует по-разному. ХМ, которые находятся в таблице до водорода, взаимодействуют с любой кислотой. Неокисляющие вещества с металлами участвуют в реакции замещения, для которой свойственно окисление и восстановление.
Окисляющая кислота, вступая в реакцию с металлом, расположенным после водорода, образует следующие продукты:
При взаимодействии железа и HNO3 различной концентрации получается Cu, NO. Больше вариантов реакций характерно для взаимодействия с АМ. Современные химики разработали технологию легирования, с помощью которой осуществляется ввод в расплав дополнительных ХМ. Они легко модифицируют физические, механические и химические свойства главного материала.
Источник
Химические свойства
Химические свойства — свойства веществ (химических элементов, простых веществ и химических соединений), имеющие отношение к химическим процессам, то есть проявляемые в процессе химической реакции.
К химическим свойствам относятся способность реагировать с другими веществами, и способность разлагаться [1] .
Химические свойства вещества зависят не только от того, из каких химических элементов оно состоит, но и от структуры молекул вещества (структурная изомерия) и от пространственной конфигурации молекул (конформация, стереоизомерия). Как правило, вещества, имеющие одинаковый состав и структуру, имеют и одинаковые химические свойства, за исключением реакций с веществами другой пространственной конфигурации. Это различие особенно важно в биохимии, например, способность белка к реакции с другими биологически активными веществами может зависеть от способа его сворачивания.
Примеры химических свойств
См. также
Примечания
- Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Химические свойства» в других словарях:
Химические свойства — – определяют способность материала к химическим превращениям при контакте с веществами внешней среды (в том числе агрессивной), к сохранению состава и структуры в условиях инертной окружающей среды, химическому взаимодействию компонентов… … Энциклопедия терминов, определений и пояснений строительных материалов
химические свойства — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN chemical property Properties of a substance depending on the arrangement of the atoms in the molecule, e.g. bio availability, degradability, persistence, etc. (Source: RRDA)… … Справочник технического переводчика
химические свойства — – совокупность электромагнитных взаимодействий между химическими элементами, приводящих к образованию равновесных устойчивых систем (молекул, ионов, радикалов). Словарь по аналитической химии [3] … Химические термины
химические свойства — cheminės savybės statusas T sritis automatika atitikmenys: angl. chemical properties vok. chemische Eigenschaften, f rus. химические свойства, n pranc. propriétés chimiques, f … Automatikos terminų žodynas
Химические свойства спиртов — Химические свойства спиртов это химические реакции спиртов во взаимодействии с другими веществами. Они определяются в основном наличием гидроксильной группы и строением углеводородной цепи, а также их взаимным влиянием: Чем больше… … Википедия
Физико-химические свойства — – характеризуют влияние физического состояния материала на протекание определенных химических процессов (например, степень дисперсности материала влияет на кинетику химических реакций). [Косых, А. В. Искусственные и природные строительные… … Энциклопедия терминов, определений и пояснений строительных материалов
Физико-химические свойства огнеупорного сырья — [огнеупора] –совокупность химического и/или зернового состава огнеупорного сырья [огнеупора], его термомеханических и теплофизических свойств, определяющих область применения. [ГОСТ Р 52918 2008] Рубрика термина: Сырье Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов
Физико-химические свойства пластовых флюидов — Значимость предмета статьи поставлена под сомнение. Пожалуйста, покажите в статье значимость её предмета, добавив в неё доказательства значимости по частным критериям значимости или, в случае если частные критерии значимости для… … Википедия
физические и химические свойства — fizikinės ir cheminės savybės statusas T sritis automatika atitikmenys: angl. physicochemical properties vok. physikalish chemische Eigenschaften, f rus. физические и химические свойства, n pranc. propriétés physico chimiques, f … Automatikos terminų žodynas
физико-химические свойства — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN physicochemical properties … Справочник технического переводчика
Источник
Химические свойства. Химические свойства характеризуют способность материала к химическим взаимодействиям с другими веществами
Химические свойства характеризуют способность материала к химическим взаимодействиям с другими веществами. Возможность химических и физико-химических процессов определяется наличием у строительных материалов таких свойств, как химическая активность, химическая (коррозионная) стойкость, растворимость, способность к кристаллизации и адгезии.
Химическая активность может быть положительной, если процесс взаимодействия приводит к упрочнению структуры (образование цементного, гипсового камня), и отрицательной, если протекающие реакции вызывают разрушение материала (коррозионное действие кислот, щелочей, солей).
Под адгезией понимают соединение твердых и жидких материалов по поверхности, обусловленное межмолекулярным взаимодействием. Адгезионные силы сцепления играют важную роль при получении многокомпонентных строительных материалов. Например железобетон, монолитность которого обеспечивается прочным соединением заполнителей и арматуры с цементным камнем за счет адгезионного межмолекулярного взаимодействия.
Растворимость характеризует способность вещества образовывать с водой или органическими растворителями однородные системы — растворы. Это свойство зависит от химического со става веществ, температуры и давления.
Кристаллизация — процесс образования кристаллов из паров, растворов, расплавов при электролизе и химических реакциях, который сопровождается выделением тепла.
Процессы растворения и кристаллизации являются основополагающими при получении искусственных каменных материалов на основе цемента, гипса, извести.
Химическая (коррозионная) стойкость — это свойство, характеризующее способность материалов противостоять разрушающему действию агрессивных сред. Химическую стойкость оценивают специальным коэффициентом, который рассчитывают по отношению прочности (массы) материала после коррозионных испытаний (в случае кислот или щелочей образцы в течение двух часов кипятят в их концентрированном растворе) к прочности (массе) до испытаний. При коэффициенте 0,90. 0,95 мате риал признается химически стойким по отношению к исследуемой среде. Органические материалы — древесина, битумы, пластмассы — при обычных температурах относительно стойки к действию кислот и щелочей слабой и средней концентрации. Свойства неорганических материалов зависят от их состава.
Действие солей приводит к накоплению кристаллических продуктов в порах материала, вызывающему рост деформаций и разрушение изделия.
1.5. Механические свойства
Механические свойства характеризуют поведение материалов при действии различного вида нагрузок (растягивающих, сжимающих, изгибающих и т.д.). В результате механических воздействий материал деформируется. Если внешние усилия невелики, деформация является упругой, т.е. после снятия нагрузки материал возвращается к прежним размерам. Если нагрузка достигает значительной величины, кроме упругих деформаций появляются пластические, приводящие к необратимому изменению формы. Наконец, при достижении некоторой предельной величины происходит разрушение материала. В зависимости от того, как материалы ведут себя под нагрузкой, их подразделяют на пластичные (изменяют форму под нагрузкой без появления трещин и сохраняют изменившуюся форму после снятия нагрузки) и хрупкие. Пластичные материалы, как правило, однородные, они состоят из крупных, способных смещаться относительно друг друга молекул (органические вещества) или кристаллов с легко деформируемой кристаллической решеткой (металлы). Хрупкие материалы (бетон, природный камень, кирпич) хорошо сопротивляются сжатию и в 5—50 раз хуже — растяжению, изгибу, удару (соответственно стекло, гранит). Прочность строительных материалов характеризуется пределом прочности R, под которым понимают отношение нагрузки, вызывающей разрушение материала, к площади сечения изделия.
Предел прочности на сжатие Есж (растяжение Rраст) определя
где F — разрушающая нагрузка, Н (кгс); А — площадь поперечного сечения образца до испытания, мм 2 (см 2 ).
Определение предела прочности на сжатие строительных материалов проводят, согласно стандартам, путем испытания образцов на механических или гидравлических прессах.
Прочность зависит от структуры материала, вещественного состава, влажности, направления и скорости приложения нагрузки. Связь между пределом прочности на сжатие и величиной средней плотности используют для оценки эффективности материала в конструкциях.
Необходимость создания запаса обусловлена неоднородностью строения большинства строительных материалов, недостаточной надежностью полученных результатов при определении предела прочности, отсутствием учета многократного переменного действия нагрузки, старения материалов и т.д. Запас прочности и величину допускаемого напряжения определяют и устанавливают в соответствии с нормативными требованиями в зависимости от вида и назначения материала, долговечности строящегося сооружения.
Твердость — способность материала сопротивляться проникновению в его поверхность другого более твердого тела правильной формы Для определения твердости существует несколько методов. Твердость каменных материалов, стекла оценивают с помощью шкалы твердости Мооса, состоящей из десяти минералов, расположенных по степени возрастания их твердости (1 — тальк или мел, 10 — алмаз. Твердость металлов и пластмасс рассчитывают по диаметру отпечатка вдавливаемого стального шарика определенной массы и размера <метод Бринелля), по глубине погружения алмазного конуса под действием заданной нагрузки <метод Роквелла) или площади отпечатка алмазной пирамиды (метод Виккерса). Твердость материалов определяет возможность их использования в конструкциях, подвергающихся истиранию и износу (полы, дорожные покрытия).
Истираемость характеризуется величиной потери первона чальной массы материала (г), отнесенной к единице площади истирания (см 2 ). Истираемость определяют на специальных кругах или посредством воздействия на поверхность материала воздуш ной или водной струи, несущей в себе зерна абразивных мате риалов (песок определенной крупности). Сопротивление исти ранию определяют для материалов, предназначенных для полов, дорожных покрытий, лестничных ступеней.Сопротивление удару имеет большое значение для материалов, применяемых для покрытия полов в цехах промышленных предприятий. Предел прочности материала при ударе характеризуется количеством работы, затраченной на разрушение образца, отнесенным к единице объема. Испытание материалов проводят на специальном приборе — копре.
Износ — разрушение материала при совместном действии истирающей и ударной нагрузок. Для определения износостойкости образцы материала испытывают в специальном вращающемся барабане с металлическими шарами. Прочность оценивают по потере массы образцов, выраженной в процентах. Износу подвергаются покрытия дорог, аэродромов и полов промышленных предприятий. Совокупность свойств материалов должна обеспечивать их долговременную нормативную эксплуатацию в зданиях и сооружениях — долговечность.
1.7. Технологические свойства
Технологические свойства характеризуют способность материала подвергаться тому или иному виду обработки. Так, например, к технологическим свойствам древесины относятся хорошая гвоздимость, легкость обработки различными инструментами. Технологические свойства некоторых полимерных материалов включают способность обтачиваться, сверлиться, легко склеиваться, свариваться. Бетонные, растворные, глиняные, асфальтобетонные и другие смеси обладают пластичностью и вязкостью, которые обеспечивают заполнение определенного объема. Пластично-вязкие материалы по своим физическим свойствам занимают промежуточное положение между жидкими и твердыми и при определенных условиях могут, как бы совмещать свойства твердого тела и жидкости. Известно, что глиняное или иное тесто можно разрезать ножом, чего нельзя сделать с жидкостью, но вместе с тем это же тесто под действием внешних сил может принимать форму сосуда, т.е. ведет себя как жидкость.
Пластичность — способность материала деформироваться без разрыва сплошности под влиянием внешнего механического воздействия и сохранять полученную форму, когда действие внешней силы прекращается.
Пластичность — это важное свойство, влияющее на технологию производства бетонов, строительных растворов, керамических и других строительных материалов, а также на свойства готовых изделий. При высокой пластичности ускоряются и удешевляются операции смешивания и формования, повышается однородность готовых изделий, что благоприятно сказывается на их физических и механических свойствах, химической стойкости
Вязкостью, или внутренним трением, называют сопротивление жидкости передвижению одного ее слоя относительно другого.
Когда какой-либо слой жидкости приводится в движение, то соседние слои тоже вовлекаются в движение и оказывают ему сопротивление. Величина этого сопротивления зависит от вещественного состава и температуры. Для количественной характеристики вязкости служит коэффициент динамической вязкости (Па • с). Вязкостные свойства имеют большое значение при использовании органических вяжущих материалов, синтетических и природных полимеров, клеев, масел, красочных составов. Вязкость этих материалов снижается при нагревании и резко повышается с понижением температуры.
Лекция
Тема:Строительные материалы и изделия
> Строительный материал — материал, предназначенный для создания строительных конструкций зданий и сооружений и изготовления строительных изделий, а также для выполнения защитно-отделочных покрытий зданий и сооружений.
> Классификация строительных материалов по назначению позволяет выявить наиболее эффективные материалы, определить их взаимозаменяемость и после этого правильно составить баланс производства и потребления материалов.
> По виду исходного сырья строительные материалы делят на: природные и искусственные, минеральные и органические.
Природные, или естественные, строительные материалы и изделия получают непосредственно из недр земли или путем переработки древесных материалов. Этим материалам при изготовлении изделий из них придают определенную форму и рациональные размеры, не изменяя их внутреннего строения, химического и вещественного состава. Чаще других из природных используют древесные и каменные материалы и изделия. Кроме них, в готовом к употреблению виде или при механической обработке можно получить природный битум или асфальт, камыш, торф, костру и другие природные продукты.
> Искусственные строительные материалы разделяют на:
> • безобжиговые — материалы, отвердевание которых происходит при обычных, сравнительно невысоких температурах с кристаллизацией новообразований из растворов, а также материалы, отвердевание которых происходит в условиях автоклавов при повышенных температуре 175. 200 °С) и давлении водяного пара 0,9. 1,6 МПа);
> • обжиговые — материалы, формирование структуры которых происходит в процессе их термообработки в основном за счет твердофазовых превращений и взаимодействий.
> Указанное деление является отчасти условным, ибо не всегда возможно определить четкую границу между материалами. В конгломератах безобжигового типа цементирующиевяжущие представлены неорганическими, органическими, полимерными, а также смешанными (например, органоминеральными) продуктами.
> К неорганическим вяжущим относят: клинкерные цементы, гипсовые, магнезиальные и др.;
> к органическим — битумные и дегтевые вяжущие вещества и их производные;
> к полимерным — термопластичные и термореактивные полимерные продукты.
> Полимерные вяжущие вещества — важные компоненты при изготовлении полимербетонов, строительных пластмасс,
> стеклопластиков и других, нередко называемых композиционными материалами.
> Классификация искусственных строительных материалов (конгломератов), объединяемая общей теорией, расширяется с появлением новых вяжущих веществ, разработкой новых искусственных заполнителей, новых технологий или существенной модернизацией существующих, созданием новых комбинированных структур.
Источник