Что значит два целых числа

Что такое целые числа

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы поговорим о ЦЕЛЫХ ЧИСЛАХ.

Это весьма обширное понятие из математики, с которым школьники сталкиваются уже в 5 классе.

Целые числа — это.

Целые числа – это все положительные, все отрицательные числа и ноль. Главное, чтобы они не содержали дробной части.

Согласно этому определению, к целым числам можно отнести:

-1256, -35, -9, 0, 14, 95, 2020

и так далее. Ведь у них нет дробной части. А вот числа:

0.5, 13.1319, ½, -¾, — 237.3

и так далее не могут считаться целыми, так как у них есть какие-то цифры после запятой или они являются дробью.

Все многообразие целых чисел называется множеством целых чисел. Это официальный математический термин. И обозначается он буквой Z.

В это множество входят и так называемые натуральные числа (это что?). Это все те, которые имеют положительное значение, но опять же без дробной части. Проще говоря, все числа, которые мы используем при счете. Например, 1, 2, 5, 10, 100 и так далее.

Множество натуральных чисел обознается буквой N. И зависимость его и множества целых чисел наглядно показана на следующем рисунке.

Отсюда можно сделать важный вывод:

Любое натуральное число автоматически является еще и целым. Но при этом далеко не каждое целое число является еще и натуральным.

А можно представить это и в таком варианте. Целые числа — это:

  1. Натуральные числа;
  2. Ноль;
  3. Отрицательные числа.

Каким бы определением вы не пользовались, главное, чтобы было все понятно.

История изучения целых чисел

Опять же эту историю нужно разделить на три части. Ведь изучение натуральных чисел, а также открытие нуля и отрицательных чисел происходило независимо друг от друга. Да еще и в разных странах.

Изучение натуральных чисел

Тут все максимально просто. Эти числа возникли, как только человеку понадобилось считать – будь то куски мяса или количество бревен для дома.

Более точное изучение натуральных чисел начинается в Древнем Египте и Древней Месопотамии, а это более 6 тысяч лет назад.

А современные математики опираются на то, что после себя оставил древнегреческий ученый Пифагор. Он как раз активно собирал египетские и вавилонские данные, а после отразил их в своих трудах.

Открытие нуля

Конечно, египтяне, вавилоняне и даже греки знали о существовании нуля. Но не считали его числом, а потому не пользовались им. Это, кстати, приносило им немало сложностей. Они порой часами решали задачки, которые нынешний школьник посчитает за минуту.

Но официально число ноль появилось в 5-м веке. И «изобрели» его в Индии. Дело в том, что у местных жителей всегда существовало убеждение, что «ничто – это тоже что-то». Даже понятие Нирвана, которое обозначает состояние небытие, зародилось именно в Индии.

Потому-то там и придумали символ, который обозначал бы «ничто». Авторами его стали математики Брахмагупта и Ариабхата.

Как видите, индийский символ нуля очень похож на современный. Ну, разве что приплюснут и больше напоминает правильную окружность. Форма выбрана не случайно. По индийским поверьям, ноль символизирует круговорот жизни и мироздания. Его еще называют «змея вечности».

Когда арабы завоевали часть Индии, они переняли все математические знания. А во время крестовых походов многое, в том числе и цифры, перекочевали в Европу. Хотя потребовалось еще несколько сотен лет, чтобы «ноль» стал неотъемлемой частью европейской науки.

Открытие отрицательных чисел

Отрицательные числа первыми начали изучать китайцы во 2 веке до нашей эры. Их использовали в торговле и называли «долгами». А обычные числа – «имуществом». А для записи отрицательных чисел использовали перевернутый вид.

А вот в Европе к ним очень долго относились пренебрежительно, считая «несуществующими» и «абсурдными». Лишь в 12 веке математик Леонардо Фибоначчи (автор знаменитого числового ряда) описал их в своей книге «Книга Абака».

В середине 16 века математик Михаил Штифель посвятил им целый раздел в своей книге «Полная арифметика».

Но признание они получили лишь в 17 веке, после того как известный Рене Декарт создал свою систему координат.

В ней он также использовал нуль, привязав к нему положительные и отрицательные числа. Одни находились справа от него, а другие – слева.

Свойства целых чисел

Всем целым числам свойственны следующие характеристики:

    Замкнутость. При математических действиях с целыми числами, за исключением деления, получаются только целые числа.

Если А и В – целые, то А+В=целое, А-В=целое и А*В=целое

Ассоциативность. При сложении или умножении трех и более целых чисел их можно менять местами, и результат не изменится.

(А + В) + С = А + (В + С)

Коммутативность. При перестановке мест слагаемых (множителей) – сумма (произведение) не меняется.

А + В = В + А, А * В = В * А

Если ноль участвует в сложении или вычитании, то значение остается неизменным.

А + 0 = 0, А – 0 = 0

Противоположность. При сложении одинаковых чисел с разными знаками, получается всегда ноль.

Разность знаков. При умножении чисел с разными знаками, результат всегда отрицательный. Если знаки одинаковые, то результат всегда положительный.

А * А = АА, А * (-А) = -АА, (-А) * (-А) = АА

Добавим: точно такое же правило действует и при делении. Минус на минус дают плюс. А минус на плюс или плюс на минус всегда дают минус.

Вместо заключения

Мы уже рассказали, с каким трудом в нашу жизнь попали отрицательные числа. Но сегодня они широко используются не только в математике.

  1. География. Высоту гор измеряют положительными значениями, а вот глубину водоемов – отрицательными. А уровень моря является нулем.
  2. История. Понятие «наша эра» разделила историю на положительное летоисчисление и отрицательное. Все, что происходило, более 2 тысяч лет назад можно описать как «в минус 125 году» или «в -3000 лет». Хотя больше принято говорить «125 год до н.э» и «3000 лет до н.э.».
  3. Медицина. Для определения остроты зрения врачи используют понятия отрицательных и положительных диоптрий. Идеальное зрение – это ноль. Минус – близорукость (не видит вдалеке), а плюс – дальнозоркость (не видит вблизи).
  4. Физика. Есть такие понятия, как положительно и отрицательно заряженные частицы. Одни называются протонами, а другие – электронами.

Ну и, наконец, слова положительный и отрицательный используются и в более разговорном смысле, как синонимы хорошего и плохого.

Например, в книгах и фильмах обязательно есть положительные и отрицательные герои. Также и наши черты характера, эмоции и поступки можно разделить на эти две категории.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (1)

Сами по себе числа ничего не значат, будь они даже целыми и натуральными, чтобы в них был смысл, они должны иметь привязку к чему-либо. Например, единица меньше пятидесяти, но всегда ли единица меньше? Если я скажу, что один рубль меньше пятидесяти копеек, то это будет ложью.

Источник

Целые числа. Определение.

Существуют множество разновидностей чисел, одни из них – это целые числа. Целые числа появились для того, чтобы облегчить счет не только в положительную сторону, но и в отрицательную.

Рассмотрим пример:
Днем на улице была температура 3 градуса. К вечеру температура снизилась на 3 градуса.
3-3=0
На улице стало 0 градусов. А ночью температура снизилась на 4 градуса и стало показывать на термометре -4 градуса.
0-4=-4

Ряд целых чисел.

Натуральными числами мы такую задачу описать мы не сможем, рассмотрим эту задачу на координатной прямой.

У нас получился ряд чисел:
…, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, …

Этот ряд чисел называется рядом целых чисел.

Целые положительные числа. Целые отрицательные числа.

Ряд целых чисел состоит из положительных и отрицательных чисел. Справа от нуля идут натуральные числа или их еще называют целыми положительными числами. А слева от нуля идут целые отрицательные числа.

Нуль не является ни положительным ни отрицательным числом. Он является границей между положительными и отрицательными числами.

Целые числа – это множество чисел, состоящие из натуральных чисел, целых отрицательных чисел и нуля.

Ряд целых чисел в положительную и в отрицательную сторону является бесконечным множеством.

Если мы возьмём два любых целых числа, то числа, стоящие между этими целыми числами, будут называться конечным множеством.

Например:
Возьмем целые числа от -2 до 4. Все числа, стоящие между этими числами, входят в конечное множество. Наше конечное множество чисел выглядит так:
-2, -1, 0, 1, 2, 3, 4.

Натуральные числа обозначаются латинской буквой N.
Целые числа обозначаются латинской буквой Z. Все множество натуральных чисел и целых чисел можно изобразить на рисунке.

Неположительные целые числа другими словами – это отрицательные целые числа.
Неотрицательные целые числа – это положительные целые числа.

Вопросы по теме:
Как называются числа, находящиеся в ряду целых чисел: а) справа от нуля; б) слева от нуля?
Ответ: а) натуральные числа или целые положительные числа. Оба термина несут один и тот же смысл.
б) целые отрицательные числа.

Назовите наибольшее целое число?
Ответ: ряд положительных целых чисел бесконечен, поэтому наибольшего целого числа не существует.

Какое наименьшее целое число?
Ответ: ряд отрицательных чисел бесконечен, поэтому наименьшего целого числа не существует.

Пример №1:
Сколько целых чисел расположено между числами -33 и 102?
Решение:
У нас 32 отрицательных числа, есть нуль и 101 положительных чисел.
32+1+101=134
Ответ: 134

Пример №2:
Приведите пример целого числа.
Целое число: -16523, -100, -1, 0, 1, 2, 3, 4, 5, 6, 7, 1009, 1984.

Пример №3:
Сколько четных целых чисел расположено между числами -4 и 5?
Ответ: -2, 2, 4.

Источник

Целые числа

К целым числам относятся натуральные числа, ноль, а также числа, противоположные натуральным.

Натуральные числа — это положительные целые числа.

Содержание

Латинской буквой \mathbb обозначается множество целых чисел.

К примеру: 1, 3, 7, 19, 23 и т.д. Такие числа мы используем для подсчета (на столе лежит 5 яблок, у машины 4 колеса и др.)

Латинской буквой \mathbb — обозначается множество натуральных чисел.

К натуральным числам нельзя отнести отрицательные (у стула не может быть отрицательное количество ножек) и дробные числа (Иван не мог продать 3,5 велосипеда).

Числами, противоположными натуральным, являются отрицательные целые числа: −8, −148, −981, … .

Арифметические действия с целыми числами

Что можно делать с целыми числами? Их можно перемножать, складывать и вычитать друг из друга. Разберем каждую операцию на конкретном примере.

Сложение целых чисел

Два целых числа с одинаковыми знаками складываются следующим образом: производится сложение модулей этих чисел и перед полученной суммой ставится итоговый знак:

Вычитание целых чисел

Два целых числа с разными знаками складываются следующим образом: из модуля большего числа вычитается модуль меньшего и перед полученным ответом ставят знак большего по модулю числа:

Умножение целых чисел

Чтобы умножить одно целое число на другое нужно выполнить перемножение модулей этих чисел и поставить перед полученным ответом знак « + », если исходные числа были с одинаковыми знаками, и знак « − », если исходные числа были с разными знаками:

Следует запомнить следующее правило перемножения целых чисел:

Существует правило перемножения нескольких целых чисел. Запомним его:

Знак произведения будет « + », если количество множителей с отрицательным знаком четное и « − », если количество множителей с отрицательным знаком нечетное.

(-5) \cdot (-4) \cdot (+1) \cdot (+6) \cdot (+1) = +120

Деление целых чисел

Деление двух целых чисел производится следующим образом: модуль одного числа делят на модуль другого и если знаки чисел одинаковые, то перед полученным частным ставят знак « + », а если знаки исходных чисел разные, то ставится знак « − ».

Свойства сложения и умножения целых чисел

Разберем основные свойства сложения и умножения для любых целых чисел a , b и c :

  1. a + b = b + a – переместительное свойство сложения;
  2. (a + b) + c = a + (b + c) – сочетательное свойство сложения;
  3. a \cdot b = b \cdot a – переместительное свойство умножения;
  4. (a \cdot c) \cdot b = a \cdot (b \cdot c) – сочетательное свойства умножения;
  5. a \cdot (b \cdot c) = a \cdot b + a \cdot c – распределительное свойство умножения.

Источник

Числа. Целые числа. Свойства целых чисел.

Целые числа – это натуральные числа, а также противоположные им числа и нуль.

Целые числа — расширение множества натуральных чисел N, которое получается путем добавления к N 0 и отрицательных чисел типа − n. Множество целых чисел обозначают Z.

Сумма, разность и произведение целых чисел дают снова целые числа, т.е. целые числа составляют кольцо относительно операций сложения и умножения.

Целые числа на числовой оси:

Сколько целых чисел? Какое количество целых чисел? Самого большого и самого маленького целого числа нет. Этот ряд бесконечен. Наибольшее и наименьшее целое число не существует.

Натуральные числа еще называются положительными целыми числами, т.е. фраза «натуральное число» и «положительное целое число» это одно и то же.

Ни обыкновенные, ни десятичные дроби не являются целыми числами. Но существуют дроби с целыми числами.

Примеры целых чисел: -8, 111, 0, 1285642, -20051 и так далее.

Говоря простым языком, целые числа — это (∞. -4,-3,-2,-1,0,1,2,3,4. + ∞) – последовательность целых чисел. То есть те, у которых дробная часть (<>) равна нулю. Они не имеют долей.

Натуральные числа — это целые, положительные числа. Целые числа, примеры: (1,2,3,4. + ∞).

Операции над целыми числами.

1. Сумма целых чисел.

Для сложения двух целых чисел с одинаковыми знаками, необходимо сложить модули этих чисел и перед суммой поставить итоговый знак.

2. Вычитание целых чисел.

Для сложения двух целых чисел с разными знаками, необходимо из модуля числа, которое больше вычесть модуль числа, которое меньше и перед ответом поставить знак большего числа по модулю.

3. Умножение целых чисел.

Для умножения двух целых чисел, необходимо перемножить модули этих чисел и перед произведением поставить знак плюс (+), если исходные числа были одного знака, и минус (–) – если разного.

Когда умножаются несколько чисел, знак произведения будет положительным, если число неположительных сомножителей чётное, и отрицателен, если нечётное.

(–2) ∙ (+3) ∙ (–5) ∙ (–3) ∙ (+4) = –360 (3 неположительных сомножителя).

4. Деление целых чисел.

Для деления целых чисел, необходимо поделить модуль одного на модуль другого и поставить перед результатом знак «+», если знаки чисел одинаковые, и минус, – если разные.

Свойства целых чисел.

Z не замкнуто относительно деления 2-х целых чисел (например, 1/2). Ниже приведенная таблица показывает некоторые основные свойства сложения и умножения для любых целых a, b и c.

Источник

Читайте также:  Живые квартиры что это значит
Оцените статью