Что значит доказать теорему методом от противного

Доказательство от противного

Урок можно начать с рассказа учителя.

Приведем примеры таких доказательств.

Пример 1. Разведчики получили задание: выяснить, находится ли в данном селе танковая колонна противника. Командир разведки докладывает: если бы в селе была танковая колонна, го тогда бы были следы гусениц, а их мы не обнаружили.

Схема рассуждений. Требуется доказать: нет колонны. Предположим, есть колонна. Тогда должны быть следы. Противоречие — следов нет. Вывод: предположение неверно, значит, танковой колонны нет.

Пример 2. Врач после осмотра больного ребенка говорит:

«У ребенка нет кори. Если бы у него была корь, то тогда была бы сыпь на теле, но сыпи нет».

Рассуждения врача тоже выполнялись по указанной выше схеме.

Задается вопрос: «В чем же сущность способа доказательства от противного?»— и вывешивается таблица (табл. 5).

Способом от противного можно решить уже известные до этого задачи.

1. Дано: а||b, прямые с и а пересекаются. Докажите: прямые с и b пересекаются.

1) Предположим, что b||с.

2) Тогда получается, что через точку О (точка пересечения прямых а и с) проходят две различные прямые а и b, которые параллельны прямой b.

3) Это противоречит аксиоме параллельных прямых.

Вывод: значит, наше предположение неверно, а верно то, что и требовалось доказать, т. е. что прямые бис пересекаются.

2. Дано: A, В, С — точки прямой а, АВ = 5 см, АС = 2 см, ВС = 7 см. Докажите: точка С не лежит между точками А и В.

1) Предположим, что точка С лежит между точками А и В.

2) Тогда по аксиоме измерения отрезков АВ = АС + СВА

3) Это противоречит условию: АВ = АС + СВ, так как АВ = 5 см, АС+ С5 = 9 см.

Вывод: точка С не лежит между точками А и В.

3. Дано: АВ — полупрямая, С АВ, АС Поиск

Источник

Метод от противного

Апагогия — логический приём, которым доказывается несостоятельность какого-нибудь мнения таким образом, что или в нём самом, или же в необходимо из него вытекающих следствиях мы открываем противоречие.

Поэтому апогогическое доказательство является доказательством косвенным: здесь доказывающий обращается сперва к противоположному положению, чтобы показать его несостоятельность, и затем по закону исключения третьего делает вывод о справедливости того, что требовалось доказать. Этот род доказательства называется также приведением к нелепости. Существенною его принадлежностью является довод, что третье не существует, т. е., что кроме мнения, справедливость которого нужно доказать, и второго, ему противоположного, которое служит исходным пунктом доказательства, никакой третий факт не допускается. Поэтому косвенное доказательство исходит из факта, отрицающее положение, справедливость которого требуется доказать.

Примеры

Смотри также

Wikimedia Foundation . 2010 .

Смотреть что такое «Метод от противного» в других словарях:

Метод бесконечного спуска — В математике, метод бесконечного спуска это метод доказательства от противного, основанный на том, что множество натуральных чисел вполне упорядочено. Часто метод бесконечного спуска используется для доказательства того, что у некоторого… … Википедия

Исчерпывания метод — метод доказательства, применявшийся математиками древности при нахождении площадей и объёмов. Название «метод исчерпывания» введено в 17 в. Типичная схема доказательства при помощи И. м. может быть изложена в современных… … Большая советская энциклопедия

ИСЧЕРПЫВАНИЯ МЕТОД — метод доказательства, применявшийся математиками древности при нахождении площадей и объемов. Назв. метод исчерпывания введено в 17 в. Типичная схема доказательства при помощи И. м. может быть изложена в современных обозначениях так: для… … Математическая энциклопедия

Доказательство от противного — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

БЫТИЕ И ВРЕМЯ — ’БЫТИЕ И ВРЕМЯ’ (‘Sein und Zeit’, 1927) основная работа Хайдеггера. На создание ‘Б.иВ.’, как традиционно полагается, повлияли две книги: работа Брентано ‘Значение бытия согласно Аристотелю’ и ‘Логические исследования’ Гуссерля. Первая из них… … История Философии: Энциклопедия

ИНТУИЦИОНИЗМ — (от позднелат. intuitio, от лат. intueor пристально смотрю) направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно содержательная интуиция. Вся математика … Философская энциклопедия

МАТЕМАТИКА — Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера

БЕСКОНЕЧНО МАЛЫХ ИСЧИСЛЕНИЕ — термин, ранее объединявший различные разделы математич. анализа, связанные с понятием бесконечно малой функции. Хотя метод бесконечно малых (в той или иной форме) с успехом применялся учеными Древней Греции и средневековой Европы для решения… … Математическая энциклопедия

АБСУРД — (от лат. absurdus нелепый, глупый) нелепость, противоречие. В логике под А. обычно понимается противоречивое выражение. В таком выражении что то утверждается и отрицается одновременно, как, напр., в высказывании «Тщеславие существует и тщеславия… … Философская энциклопедия

ОПРОВЕРЖЕНИЕ — в логике рассуждение, направленное против выдвинутого утверждения, предположения или доказательства и имеющее своей целью установление его ложности или недоказанности. Различают прямое и косвенное О. При прямом О. из выдвинутого положения выводят … Философская энциклопедия

Источник

Метод доказательства «от противного» при изучении темы «Параллельные прямые»

Разделы: Математика

Одной из важнейших задач, которую ставит перед собой учитель математики, начиная курс геометрии – научить ребят доказывать теоремы. Задача сколь важная, столь и сложная. Без кропотливой работы на каждой уроке, без использования наглядных средств, памяток, выполнения разнообразных упражнений эту задачу не решить.

Одним из наиболее сложных методов доказательства является метод «от противного».

Этот метод доказательства основан на логическом приеме апагогии (греч. лат. deductio), когда несостоятельность какого-нибудь мнения доказывается таким образом, что или в нём самом, или же в необходимо из него вытекающих следствиях мы открываем противоречие.

Важно также вспомнить, что выполняется закон исключенного третьего. Суть его легко объяснить на простейших бытовых примерах: третье не существует, т. е., что кроме мнения, справедливость которого нужно доказать, и второго, ему противоположного, которое служит исходным пунктом доказательства, никакой третий факт не допускается.

Еще одной сложностью при работе над доказательством является то, что ученику приходится опираться только на логические выводы – чертеж ему помочь не может. Для школьников, привыкших работать со схемами, где все наглядно и понятно, и зачастую полностью опираться на чертеж при доказательстве, такая работа очень трудна.

Хотя с методом доказательство «от противного» ученики знакомятся довольно рано (при доказательстве теоремы о двух прямых, перпендикулярных третьей), редко кто из ребят схватывает суть доказательства. Наиболее эффективно, по нашему мнению начать работу над этим методом при рассмотрении темы «Параллельные прямые».

Ход урока

Подготовительный этап.

На этом этапе важно научить школьников строить отрицания утверждений.

Пример 1. Постройте отрицание следующих утверждений:

  1. Прямая а параллельная прямой b.
  2. Прямая a пересекает прямую b.
  3. Прямая а пересекает прямую b и прямую c.
  4. Прямая а параллельна прямой b и прямой c.
  5. Прямая а пересекает прямую а или прямую b или прямую с (вариант : Прямая а пересекает одну из прямых b или с).
  6. Прямая а параллельна прямой b или прямой с (вариант : Прямая а параллельна одной из прямых b или с).

Этап знакомства с методом доказательства «от противного».

На уроке по теме «Аксиома параллельных прямых» учащиеся знакомятся с аксиомой параллельных прямых и доказательством следствий из нее.

Перед проведением доказательства полезно раздать учащимся следующие схемы:

Формулировка:
Дано:
Доказательство:
1) Выясняем, что нужно доказать:
2) Предполагаем противоположное:
3) Рассуждаем:
4) Приходим к противоречию:
5) Отрицаем предположение как неверное:
6) По закону исключенного третьего:

Далее учащиеся получают доказательства следствий, разделенное на этапы – каждый этап на отдельной карточке. Задача учащихся – собрать доказательство в логическую последовательность, используя схему.

Вот как это выглядит:

Формулировка: Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую прямую.
Дано: a ║ b
c ∩ a = M
Доказать: c ∩ b
Доказательство:
1) Выясняем, что нужно доказать: Прямая с пересекает прямую b
2) Предполагаем противоположное: Прямая с не пересекает прямую b
3) Рассуждаем: Прямая с параллельна прямой b.Прямая а и прямая b параллельны по условию.Через точку M проходят две прямые а и с, параллельные прямой b.
4) Приходим к противоречию: По аксиоме параллельных прямых через точку М может проходить только одна прямая, параллельная прямой b.
5) Отрицаем предположение как неверное: Предположение, что с не пересекает b – неверно.
6) По закону исключенного третьего: Значит с пересекает b.

Формулировка: Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны друг другу.
Дано: a ║ с
b ║ с
Доказать: a ║ b
Доказательство:
1) Выясняем, что нужно доказать: Прямая a параллельная прямой b.
2) Предполагаем противоположное: Прямая a не параллельная прямой b.
3) Рассуждаем: Прямая а пересекает прямую b точке M.Прямая а и прямая с параллельны по условию.Прямая b и прямая с параллельны по условию.Через точку M проходят две прямые a и b, параллельные прямой с.
4) Приходим к противоречию: По аксиоме параллельных прямых через точку М может проходить только одна прямая, параллельная прямой с.
5) Отрицаем предположение как неверное: Предположение, что а не параллельная прямой b – неверно.
6) По закону исключенного третьего: Значит а параллельна b.
  1. Этап рассуждений является самым трудным. Первоначально его можно включить в карточку целиком, а впоследствии усложнить задачу, разрезав на отдельные этапы.
  2. При доказательству нужно стараться поменьше использовать условных обозначений, по крайней мере, на этапе знакомства с методом.
  3. Старайтесь не использовать чертеж – он учащихся, как правило, только запутывает.

Удобство и эффективность работы с такими карточками несомненна: они пригодны и для повторения, и для контроля, и для самоконтроля при работе над доказательством.

В качестве упражнений можно предложить учащимся доказать методом «от противного» следующие факты:

  1. Если прямая параллельна одной из сторон угла, то она пересекает другую сторону (прямую, содержащую другую сторону).
  2. Если прямая пересекает одну из сторон треугольника, то она обязательно пересекает одну из оставшихся сторон (вариант: если прямая параллельная одной из сторон треугольника, то она пересекает прямые, содержащие две другие стороны треугольника).

Этап закрепления.

После изучения темы «Свойства углов, образованных при пересечении параллельных прямых секущей», можно предложить учащимся выполнить следующие задания.

Методом доказательства «от противного» докажите:

  1. Если прямые параллельны, то внутренние односторонние углы, образованные при пересечении этих прямых секущей, не могут быть оба тупыми (вариант: Если прямые параллельны, то все углы, образованные при пересечении этих прямых секущей, не могут быть тупыми).
  2. Если прямые параллельны, то внутренние односторонние углы, образованные при пересечении этих прямых секущей, не могут быть оба острыми (вариант: Если прямые параллельны, то все углы, образованные при пересечении этих прямых секущей, не могут быть острыми).

После изучения темы «Сумма углов треугольника», можно предложить учащимся выполнить следующие задания.

Методом доказательства «от противного» докажите:

  1. В треугольнике не может быть два тупых угла.
  2. В треугольнике не может быть два прямых угла.
  3. В равнобедренном треугольнике угол при основании не может быть тупым.

Включая задания на доказательство методом «от противного» в различные темы школьного курса геометрии, учитель способствует развитию логической мышления школьников и математической культуры своих учеников.

Источник

Читайте также:  Что значит когда девушка поправляет волосы перед парнем
Оцените статью