Гугол
Гу́гол (от англ. googol ) — число, в десятичной системе счисления изображаемое единицей со 100 нулями:
10 100 = 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000.
Вещественные | Пи • Золотое сечение • Серебряное сечение • e (число Эйлера) • Постоянная Эйлера — Маскерони • Постоянные Фейгенбаума • Постоянная Гельфонда • Константа Бруна • Постоянная Каталана • Постоянная Апери |
---|---|
Натуральные | Чёртова дюжина • Число зверя • Число Рамануджана — Харди • Число Грэма • Число Скьюза • Число Мозера |
Степени десяти | Мириада • Гугол • Асанкхейя • Гуголплекс |
Степени тысячи | Тысяча • Миллион • Миллиард • Биллион • Триллион • Квадриллион • … • Центиллион |
Степени двенадцати | Дюжина • Гросс • Масса |
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Гугол» в других словарях:
Гугол комплекс — Гуголплекс (от англ. googolplex) число, изображаемое единицей с гуголом нулей, 1010100. или 1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 Как и гугол,… … Википедия
Милтон Сиротта — Это статья о числе. См. также статью о англ. googol) число, в десятичной системе счисления изображаемое единицей со 100 нулями: 10100 = 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 … Википедия
Гуголплекс — (от англ. googolplex) число, равное десяти в степени гугол: 1010100 или 1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000. Как и гугол, термин… … Википедия
Именные названия степеней тысячи — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (13 мая 2011) … Википедия
Гоголь-моголь — Гоголь моголь десерт, основные компоненты которого взбитый яичный желток с сахаром. Существует множество вариаций этого напитка: с добавлением вина, ванилина, рома, хлеба, мёда, фруктовых и ягодных соков. Часто используется как леч … Википедия
Дециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Додециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Квинтиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Нониллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Октиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Источник
Самые большие числа и какое число идет после гугла
Знаете, какое число идет после гугла? Слово «гугол» получило широкое распространение благодаря всем известной компании и одноименной поисковой системе. Однако в названии поисковика это слово используется в немного измененной форме.
Число «гугол» является числом со «ста нулями» или стозначным числом. Это абстрактное число, которое не имеет за собой четкого обоснования. Оно было введено в начале 19 века. Техническое применение этому числу нашли примерно в то же время. На сегодняшний день в науке считают, что спустя гугол-полтор а с о времени Большого Взрыва во Вселенно й п роизойдет еще один взрыв массивной черной дыры, что погрузит Вселенную в «темную эпоху» , и она исчезнет или видоизменится до неузнаваемости.
Какие интересные числа есть до гугла
Люди привыкли оперировать большими цифрами, но не всегда могут вообразить , что эти цифр ы могли бы обозначать.
Один миллион. Десять в 6-й степени. Люди очень привыкли к этому числу и сталкиваются с ним довольно часто. Например, за 1 миллион рублей не купишь квартиру в Москве, но можно купить машину. Можно выстроить стопку книг из миллиона штук , и эта стопка не выйдет из атмосферы. Библия состоит из более 2-х миллионов букв. Миллион бактерий практически не различим человеческим глазом. Если человеческий волос увеличить в миллион раз, то он будет около 100 м в диаметре.
Один миллиард. Десять в 9-й степени или тысяча миллионов. О миллиардах люди слышат, но намного реже встречаются с ними, чем с миллионами. Миллиард денег представить не сложно , и неважно , рублей или долларов. Если сложить миллиард молекул воды в одну цепочку, то получится цепочка длиной около 30 сантиметров. В человеческом мозгу содержится около 100 миллиардов нейронов. За всю историю Земли на ней проживало также около 100 миллиардов людей. Один миллиард секунд составит более 31 года.
Один триллион. Десять в 12-й степени. Сколько это денег? Уже сложнее представить. По примерным подсчетам , на Земле «крутится» чуть более 4 триллионов наличных долларов. Примерно 6 триллионов килограмм кислорода вдыхают люди на Земле за год. Если собрать 1 триллион бактерий воедино, тогда может образоваться куб со сторонами в один сантиметр. Считается, что около 1 триллиона бактерий находятся на теле человека, то есть только на коже.
Далее можно приводить еще много чисел, но их все сложнее и сложнее представить, потому что сложно найти пример, который бы их описывал. Но все же такие числа люди еще «слышат» раз через раз, например:
квадриллион — 10 в 15-й степени;
квинтиллион — 10 в 18-й степени;
секстиллион — 10 в 21-й степени;
септиллион — 10 в 24-й степени;
октиллион — 10 в 27-й степени;
нониллион — 10 в 30-й степени;
До гугла можно продолжать возводить в степень 10 , и у таких чисел есть свои обозначения. Однако в обычной жизн и л юди практически не пользуются ими. Основное применение таких чисел — это наука.
Но еще в школе нас учили, что числа бесконечны, а это значит , что счет им можно продолжать вечно. Но нужны ли людям такие числа? Ведь может сложиться такая ситуация, что число есть, а выразить им нечего, то есть нечего им посчитать? Может.
Какое число идет после гугла
Итак, мы выяснили, что чем больше число, тем реже его используют. Гугол — это 10 в 100-й степени , и им измеряют время жизни нашей Вселенной. Но какое какое значимое число идет после гугла? Оказывается, что после гугла идут еще числа, которыми люди пользуются.
8.5*10 185 . Это число тесно связано с другой величиной — «длина Планка». Длина Планка является очень маленькой величиной со значением 1.616199*10 -35 . Эта длина активно используется в квантовых вычислениях, но как она связана с нашим большим числом? Длина Планка позволяет вычислить объем Планка, который также применяется в квантовой физике. Наше число 8.5*10 185 обозначает количество объемов Планка во Вселенной. Если простым языком, то наше число является попыткой посчитать объем Вселенной. Как вы понимаете, данное число является очень большим и практического применения на Земле для него не существует.
2 43 112 609 -1. Это число является одним из максимально массивных простых чисел, которые известны на сегодняшний день. Если его расписать, то понадобится около 13 миллионов цифр. Чем оно важно для людей? Это число несет в себе значение количества используемых объемов Планка при вычислении объемов Вселенной. То есть это не объем Вселенной, как в первом числе, а количество «измерителей ее объема».
Гуголплекс. Это число обозначает 10, возведенн ое в степень гугол, то есть 10, возведенное в число степен и со 100 знаками. Это число является попыткой измерить количество частиц во всей Вселенной.
Число Скьюза. Это число показывает верхний предел для математических вычислений. Считается, что числа больше числа Скьюза нарушают многие математические правила и ведут себя по-другому. Даже самое меньшее число Скьюза будет намного больше г у голплекса и обозначается как: 10˄10˄10˄36, где ˄ — это возведение в степень.
Время возвращения Пуанкаре. Это достаточно сложная тема, но с довольно простым смыслом. То ест ь с читается, что при достаточном количестве времени все становится возможным. Если просто: теорема Пуанкаре гласит, что для того , чтобы Вселенная вернулась в свое нынешнее значение , ей понадоби тс я 10˄10˄10˄10˄10˄1.1 лет.
Число Гр э ма. Это число попало в Книгу рекордов Гиннеса. Его занесли туда, потому что оно является самым большим числом, которое когда-либо применялось в математических вычислениях. Оно на столько большое, что специально для него придумали «стрелочное» обозначение. К примеру «2↑2» это «2˄2», а «2↑↑2», это «2˄2˄2». Фактически число Гр э ма выглядит так: G=f64(4), где f(n)=3↑˄n3. Практически число состоит из нескольких десятков слоев возведений в степень, причем первый слой этого числа никто не знает. Практически число Гр э ма во много раз больше , чем число из теоремы Пуанкаре , и его десятичную запись невозможно уместить во Вселенной, так как она очень мала для этого.
Бесконечность. Это число известн о еще со школьной скамьи. Невозможно даже представить, как выглядят числа до это пункта и как их записывать или описывать. Бесконечность живет по своим правилам , и о ней практически ничего не известно. Правда существуют такие уче н ые, которые уверяют, что бесконечности не существует. А существует такое число, к которому можно прибавить 1 , и получится 0.
Заключение
Какое число идет после гугла? Теперь вы знаете, что после гугла ид е т еще множество чисел. Самые известные из ни х мы привели в этой статье. Самое загадочное число — это бесконечность. Именно оно вызывает много споров. Например , есть мнение, что наша Вселенная бесконечна и ее невозможно выразить числом, хотя это делали уже неоднократно. А раз она бесконечна, тогда есть шанс, что где-то в глубине Вселенной есть копия нашей Земли.
Мы будем очень благодарны
если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.
Источник