Что значит четное простое число

Простые натуральные числа. Простые целые числа. Четные простые числа. Однозначное простое число. Простые числа

Простым числом является натуральное число, которое делится только на себя и на единицу.

Остальные числа называют составными.

Простые натуральные числа

Из определения простых чисел следует, что простыми числами являются только натуральные числа.

Это значит, что простые числа обязательно являются натуральными.

Но не все натуральные числа являются простыми числами.

Простыми натуральными числами являются лишь те из них, которые делятся только на себя и на единицу.

Примеры простых чисел:

Простые целые числа

Из определения простых чисел следует, что простыми числами являются только натуральные числа.

Это значит, что простые числа обязательно являются натуральными.

Но все натуральные числа являются одновременно целыми числами.

Таким образом, все простые числа являются целыми.

Примеры простых чисел:

Четные простые числа

Имеется только одно четное простое число – это число два.

Все остальные простые числа нечетные.

А почему не может быть простым числом четное число больше двух?

А потому, что любое четное число больше двух будет делиться на себя, не единицу и на два, т.е такое число всегда будет иметь три делителя, а возможно и больше.

Простое же число не должно иметь более двух делителей.

Однозначное простое число

Однозначное простое число – это любое число из следующих:

Только эти числа являются однозначными простыми числами.

Все остальные простые числа имеют большее количество знаков.

Источник

Простые и составные числа, определения, примеры, таблица простых чисел, решето Эратосфена

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а , то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Таблица простых чисел

Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000 , тогда следует задуматься об использовании решета Эратосфена.

Рассмотрим теорему, которая объясняет последнее утверждение.

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Возьмем, что а является натуральным числом, которое больше 1 , b является наименьшим отличным от единицы делителем для числа а . Следует доказать, что b является простым числом при помощи метода противного.

Допустим, что b – составное число. Отсюда имеем, что есть делитель для b , который отличен от 1 как и от b . Такой делитель обозначается как b 1 . Необходимо, чтобы условие 1 b 1 b было выполнено.

Из условия видно, что а делится на b , b делится на b 1 , значит, понятие делимости выражается таким образом: a = b · q и b = b 1 · q 1 , откуда a = b 1 · ( q 1 · q ) , где q и q 1 являются целыми числами. По правилу умножения целых чисел имеем, что произведение целых чисел – целое число с равенством вида a = b 1 · ( q 1 · q ) . Видно, что b 1 – это делитель для числа а . Неравенство 1 b 1 b не соответствует, потому как получим, что b является наименьшим положительным и отличным от 1 делителем а .

Простых чисел бесконечно много.

Предположительно возьмем конечное количество натуральных чисел n и обозначим как p 1 , p 2 , … , p n . Рассмотрим вариант нахождения простого числа, отличного от указанных.

Примем на рассмотрение число р, которое равняется p 1 , p 2 , … , p n + 1 . Оно не равняется каждому из чисел, соответствующих простым числам вида p 1 , p 2 , … , p n . Число р является простым. Тогда считается, что теорема доказана. Если оно составное, тогда нужно принять обозначение p n + 1 и показать несовпадение делителя ни с одним из p 1 , p 2 , … , p n .

Если это было бы не так, тогда, исходя из свойства делимости произведения p 1 , p 2 , … , p n , получим, что оно делилось бы на p n + 1 . Заметим, что на выражение p n + 1 делится число р равняется сумме p 1 , p 2 , … , p n + 1 . Получим, что на выражение p n + 1 должно делиться второе слагаемое этой суммы, которое равняется 1 , но это невозможно.

Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

Так как простых чисел очень много, то таблицы ограничивают числами 100 , 1000 , 10000 и так далее.

Решето Эратосфена

При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.

Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .

Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .

Теперь необходимо зачеркнуть все числа, которые кратны 2 . Произвести последовательное зачеркивание. Получим таблицу вида:

Далее вычеркиваем все числа, кратные 3 . Получаем таблицу вида:

Переходим к вычеркиванию чисел, кратных 5 . Получим:

Вычеркиваем числа, кратные 7 , 11 . В конечном итоге таблица получает вид

Перейдем к формулировке теоремы.

Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a , где a является арифметическим корнем заданного числа.

Необходимо обозначить b наименьший делитель составного числа а . Существует такое целое число q , где a = b · q , причем имеем, что b ≤ q . Недопустимо неравенство вида b > q , так как происходит нарушение условия. Обе части неравенства b ≤ q следует умножить на любое положительное число b , не равное 1 . Получаем, что b · b ≤ b · q , где b 2 ≤ a и b ≤ a .

Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа , которое равняется b 2 и удовлетворяет неравенству b 2 ≤ a . То есть, если вычеркнуть числа, кратные 2 , то процесс начинается с 4 , а кратных 3 – с 9 и так далее до 100 .

Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n . В примере, где n = 50 , у нас имеется, что n = 50 . Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50 . Поиск чисел производится при помощи вычеркивания.

Данное число простое или составное?

Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.

Доказать что число 898989898989898989 является составным.

Сумма цифр заданного числа равняется 9 · 8 + 9 · 9 = 9 · 17 . Значит, число 9 · 17 делится на 9 , исходя из признака делимости на 9 . Отсюда следует, что оно составное.

Такие признаки не способны доказать простоту числа. Если нужна проверка, следует производить другие действия. Самый подходящий способ – это перебор чисел. В течение процесса можно найти простые и составные числа. То есть числа по значению не должны превосходить a . То есть число а необходимо разложить на простые множители. если это будет выполнено, тогда число а можно считать простым.

Определить составное или простое число 11723 .

Теперь необходимо найти все делители для числа 11723 . Необходимо оценить 11723 .

Отсюда видим, что 11723 200 , то 200 2 = 40 000 , а 11 723 40 000 . Получаем, что делители для 11 723 меньше числа 200 .

Для более точной оценки числа 11723 необходимо записать выражение 108 2 = 11 664 , а 109 2 = 11 881 , то 108 2 11 723 109 2 . Отсюда следует, что 11723 109 . Видно, что любое число, которое меньше 109 считается делителем для заданного числа.

При разложении получим, что 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 – это все простые числа. Весь данный процесс можно изобразить как деление столбиком. То есть разделить 11723 на 19 . Число 19 является одним из его множителей, так как получим деление без остатка. Изобразим деление столбиком:

Отсюда следует, что 11723 является составным числом, потому как кроме себя и 1 имеет делитель 19 .

Ответ: 11723 является составным числом.

Источник

У простых чисел, оказывается, есть четные братья! Их называют практичными. Счет 3:0 не в пользу простых

Приветствую Вас, уважаемые Читатели! Сегодня я хочу рассказать Вам о братьях близнецах простых чисел — числах практичных или панаритмичных.

Впервые на математическом горизонте практичные числа появились в трудах итальянца Фибоначчи. Он заметил, что некоторые рациональные числа m/n (m можно представить в виде египетских дробей таким образом, что в числителе буду только делители n . Например:

Итак, пусть n — практичное число. Тогда все натуральные числа, меньшие n , можно представить в виде суммы различных делителей числа n . Посмотрите:

Естественно, такой способ проверки «практичности» числа сопряжен с трудностями, поэтому были придуманы и более эффективные методы.

Прежде всего замечу, что все практичные числа (кроме 1) четные. Например, возьмем число 15. Его делители — 1,3,5,15 , а, значит, в любом случае мы не сможем представить число 2 в виде их суммы.

Формула, которая позволяет проверять числа на «практичность» основывается на основной теореме арифметики , которая утверждает, что каждое число может быть представлено как произведение простых чисел :

Число раскладывается на простые множители. Первым множителем всегда должна быть 2 в любой степени. Дальше проверяется неравенство. Если оно выполняется для всех i не превосходящих k (в данном случае k=3 — три простых числа в разложении), то число является практичным.

Под σ(n) понимается функция делителей или дивизоров. Её результат равен сумме делителей числа, в т.ч. единицы и самого себя.

А как же выглядит представленный выше алгоритм для не практичных чисел? Естественно, не рассматриваем числа без двойки в каноническом разложении:

У практичных чисел есть очень много общего с простыми числами:

  • Во-первых , каждое четное число можно представить в виде суммы двух практичных чисел (бинарная гипотеза Гольдбаха предполагает, что каждое число является суммой двух простых, но это не доказано).
  • Во-вторых , доказано, что существует бесконечное много троек чисел вида x-2, x, x+2 , являющихся практичными. Для простых чисел это утверждение носит название гипотезы о числах-близнецах и не доказано до сих пор.
  • В-третьих , показано, что между квадратами последовательных чисел x и x+1 всегда находится практичное число. Для простых чисел это утверждение — всего лишь гипотеза Лежандра.

Итак, счёт 3:0 в пользу практичных чисел, что и следовало ожидать! Спасибо за внимание!

  • Почитайте про теорему Жордана — абсолютно тривиальное, но сложнодоказуемое утверждение.
  • TELEGRAM,VKONTAKTEиFacebook— там я публикую не только интересные статьи, но иматематический юмор и многое другое.

Источник

Простые и составные числа

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные определения

Натуральные числа больше единицы бывают простые и составные.

Простое число — это натуральное число больше 1, у которого есть всего два делителя: единица и само число.

  • 11, 13, 17, 19 — список простых чисел.
  • 11 — делится только на 1 и 11.
  • 13 — делится на 1 и 13.
  • 17 — делится на 1 и 17.

Составное число — похоже на простое. Это точно такое же натуральное число больше единицы, которое делится на единицу, на само себя и еще хотя бы на одно натуральное число.

  • 9, 10, 12, 14 — список составных чисел.
  • 9 — делится на 1, на 3 и на 9.
  • 10 — делится на 1, на 2, на 5 и на 10.
  • 12 — делится на 1, на 2, 3, 4, 6 и на 12.

Число 1 — не является ни простым, ни составным числом, так как у него только один делитель — 1. Именно этим оно отличается от всех остальных натуральных чисел.

Число 2 — первое наименьшее простое, единственное четное, простое число. Все остальные — нечетные.

Число 4 — первое наименьшее составное число.

В математике есть первые простые и составные числа, но последних таких чисел не существует.

А еще не существует простых чисел, которые оканчиваются на 4, 6, 8 или 0. В числе простых есть только одно число, которое заканчивается на 2 — и это само число 2. Из оканчивающихся на 5 — число 5. Все остальные оканчиваются на 1, 3, 7 или 9, за исключением 21, 27, 33 и 39.

Таблица простых чисел до 1000

2 3 5 7 11 13 17 19 23
29 31 37 41 43 47 53 59 61
67 71 73 79 83 89 97 101 103
107 109 113 127 131 137 139 149 151
157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251
257 263 269 271 277 281 283 293 307
311 313 317 331 337 347 349 353 359
367 373 379 383 389 397 401 409 419
421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523
541 547 557 563 569 571 577 587 593
599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701
709 719 727 733 739 743 751 757 761
769 773 787 797 809 811 821 823 827
829 839 853 857 859 863 877 881 883
887 907 911 919 929 937 941 947 953
967 971 977 983 991 997

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Источник

Читайте также:  Что значит для меня литература 19 века
Оцените статью