Системы уравнений
Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.
Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.
Например, система уравнений может быть задана следующим образом.
x + 5y = 7 |
3x − 2y = 4 |
Чтобы решить систему уравнений, нужно найти и « x », и « y ».
Как решить систему уравнений
Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.
Способ подстановки
или
«железобетонный» метод
Первый способ решения системы уравнений называют способом подстановки или «железобетонным».
Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.
Разберем способ подстановки на примере.
x + 5y = 7 |
3x − 2y = 4 |
Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».
Чтобы выразить неизвестное, нужно выполнить два условия:
- перенести неизвестное, которое хотим выразить, в левую часть уравнения;
- разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице.
Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.
При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.
x = 7 − 5y |
3x − 2y = 4 |
Теперь, вместо « x » подставим во второе уравнение полученное выражение
« x = 7 − 5y » из первого уравнения.
x = 7 − 5y |
3(7 − 5y) − 2y = 4 |
Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.
Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение « 3(7 − 5y) − 2y = 4 » отдельно. Вынесем его решение отдельно с помощью обозначения звездочка (*) .
x = 7 − 5y |
3(7 − 5y) − 2y = 4 (*) |
Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.
x = 7 − 5y |
y = 1 |
x = 7 − 5 · 1 |
y = 1 |
x = 2 |
y = 1 |
Ответ: x = 2; y = 1
Способ сложения
Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения. Вернемся к нашей системе уравнений еще раз.
x + 5y = 7 |
3x − 2y = 4 |
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.
При сложения уравнений системы левая часть первого уравнения полностью складывается с левой частью второго уравнения, а правая часть полностью складывается с правой частью.
x + 5y = 7 | (x + 5y) + (3x − 2y) = 7 + 4 |
+ => | x + 5y + 3x − 2y = 11 |
3x − 2y = 4 | 4x + 3y = 11 |
При сложении уравнений мы получили уравнение « 4x + 3y = 11 ». По сути, сложение уравнений в исходном виде нам ничего не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.
Вернемся снова к исходной системе уравнений.
x + 5y = 7 |
3x − 2y = 4 |
Чтобы при сложении неизвестное « x » взаимноуничтожилось, нужно сделать так, чтобы в первом уравнении при « x » стоял коэффициент « −3 ».
Для этого умножим первое уравнение на « −3 ».
При умножении уравнения на число, на это число умножается каждый член уравнения.
x + 5y = 7 | ·(−3) |
3x − 2y = 4 |
x · (−3) + 5y · (−3) = 7 · (−3) |
3x − 2y = 4 |
−3x −15y = −21 |
3x − 2y = 4 |
Теперь сложим уравнения.
−3x −15y = −21 | (−3x −15y ) + (3x − 2y) = −21 + 4 |
+ => | − 3x − 15y + 3x − 2y = −21 + 4 |
3x − 2y = 4 | −17y = −17 |:(−17) |
y = 1 |
Мы нашли « y = 1 ». Вернемся к первому уравнению и подставим вместо « y » полученное числовое значение и найдем « x ».
x = 7 − 5y |
y = 1 |
x = 7 − 5 · 1 |
y = 1 |
x = 2 |
y = 1 |
Ответ: x = 2; y = 1
Пример решения системы уравнения
способом подстановки
Выразим из первого уравнения « x ».
x = 17 + 3y |
x − 2y = −13 |
Подставим вместо « x » во второе уравнение полученное выражение.
x = 17 + 3y |
(17 + 3y) − 2y = −13 (*) |
Подставим в первое уравнение полученное числовое значение « y = −30 » и найдем « x ».
x = 17 + 3y |
y = −30 |
x = 17 + 3 · (−30) |
y = −30 |
x = 17 −90 |
y = −30 |
x = −73 |
y = −30 |
Ответ: x = −73; y = −30
Пример решения системы уравнения
способом сложения
Рассмотрим систему уравнений.
3(x − y) + 5x = 2(3x − 2) |
4x − 2(x + y) = 4 − 3y |
Раскроем скобки и упростим выражения в обоих уравнениях.
3x − 3y + 5x = 6x − 4 |
4x − 2x − 2y = 4 − 3y |
8x − 3y = 6x − 4 |
2x −2y = 4 − 3y |
8x − 3y − 6x = −4 |
2x −2y + 3y = 4 |
2x − 3y = −4 |
2x + y = 4 |
Мы видим, что в обоих уравнениях есть « 2x ». Наша задача, чтобы при сложении уравнений « 2x » взаимноуничтожились и в полученном уравнении осталось только « y ».
Для этого достаточно умножить первое уравнение на « −1 ».
2x − 3y = −4 | ·(−1) |
2x + y = 4 |
2x · (−1) − 3y · (−1) = −4 · (−1) |
2x + y = 4 |
−2x + 3y = 4 |
2x + y = 4 |
Теперь при сложении уравнений у нас останется только « y » в уравнении.
−2x + 3y = 4 | (−2x + 3y ) + (2x + y) = 4 + 4 |
+ => | − 2x + 3y + 2x + y = 4 + 4 |
2x + y = 4 | 4y = 8 | :4 |
y = 2 |
Подставим в первое уравнение полученное числовое значение « y = 2 » и найдем « x ».
Источник
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №14. Алгебраические системы уравнений.
Перечень вопросов, рассматриваемых в теме:
1) определение алгебраической системы уравнений;
2) методы решений алгебраических систем уравнений;
3) симметрические системы уравнений.
Глоссарий по теме
Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения систем.
Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.
Систему уравнений называют однородной, если P(x;y), Q(x;y) — однородные многочлены одной и той же степени, а а и b — действительные числа.
Уравнение P(x;y)= а, где, называют симметрическим, если P(х;y) — симметрический многочлен.
Систему двух уравнений с двумя переменными называют симметрической системой, если оба ее уравнения — симметрические.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
К определению системы уравнений будем подбираться постепенно. Сначала лишь скажем, что его удобно дать, указав два момента: во-первых, вид записи, и, во-вторых, вложенный в эту запись смысл. Остановимся на них по очереди, а затем обобщим рассуждения в определение систем уравнений.
Пусть перед нами несколько каких-нибудь уравнений. Для примера возьмем два уравнения 2·x+y=−3 и x=5. Запишем их одно под другим и объединим слева фигурной скобкой:
Записи подобного вида, представляющие собой несколько расположенных в столбик уравнений и объединенных слева фигурной скобкой, являются записями систем уравнений.
Что же означают такие записи? Они задают множество всех таких решений уравнений системы, которые являются решением каждого уравнения.
Не помешает описать это другими словами. Допустим, какие-то решения первого уравнения являются решениями и всех остальных уравнений системы. Так вот запись системы как раз их и обозначает.
А теперь можно сформулировать определение.
Определение. Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения систем.
Мы будем решать сегодня, в основном, системы уравнений с двумя переменными.
Определение. Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.
Рассмотрим методы решения систем уравнений.
Методы решения систем уравнений.
Алгоритм решения системы двух уравнений с двумя переменными x,y методом подстановки:
1. Выразить одну переменную через другую из одного уравнения системы (более простого).
2. Подставить полученное выражение вместо этой переменной в другое уравнение системы.
3. Решить полученное уравнение и найти одну из переменных.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения в уравнение, полученное на первом шаге и найти вторую переменную.
5. Записать ответ в виде пар значений, например, (x;y), которые были найдены соответственно на третьем и четвёртом шаге.
Решить систему уравнений
1. Выразим x через y из второго (более простого) уравнения системы x=5+y.
2. Подставим полученное выражение вместо x в первое уравнение системы (5+y)⋅y=6
3. Решим полученное уравнение:
4. Подставим поочерёдно каждое из найденных значений y в уравнение x=5+y, тогда получим:
5. Пары чисел (−1;−6) и (6;1) — решения системы.
- Метод алгебраического сложения
Алгоритм решения системы двух уравнений с двумя переменными x,y методом сложения:
1. Уравнять модули коэффициентов при одном из неизвестных.
2. Сложить или вычесть уравнения.
3. Решить полученное уравнение с одной переменной.
4. Подставить поочерёдно каждый из найденных на третьем шаге корней уравнения в одно из уравнений исходной системы, найти второе неизвестное.
5. Записать ответ в виде пар значений, например, (x;y), которые были найдены.
- Метод введения новых переменных
При решении систем двух уравнений с двумя переменными метод введения новых переменных можно применять двумя способами:
1. вводится одна новая переменная и используется только в одном уравнении системы;
2. вводятся две новые переменные и используются одновременно в обоих уравнениях системы.
Решение: введем новые переменные xy= u, x+y=v.
Тогда систему можно переписать в более простом виде:
Решением системы является две пары чисел.
Первая пара чисел:
Вторая пара чисел:
Однако пара (0;0), являющаяся решением первого уравнения системы, не удовлетворяет второму уравнению, т. к. 0²-3·0·0 + 0² = 0 ≠-1. Отсюда х ≠0, и поэтому можем обе части первого уравнения системы разделить на х² ≠ 0 (это не приведет к потере корней). Разделив обе части первого уравнения системы на х², получим
.
получим t² -1 — 2 = 0 t₁ =2, t₂ =-1.
Таким образом, исходная система равносильна совокупности двух систем уравнений:
Первая из этих систем имеет два решения: х₁ =1, у₁ = 2; х₂ = -1; у₂ = -2.
Вторая система несовместна. Отсюда (1;2), (—1;—2) — решения исходной системы.
Решить систему уравнений
Сложим уравнения почленно.
Решим полученное уравнение с одной переменной.
Подставим поочередно каждый из найденных корней уравнения
в одно из уравнений исходной системы, например во второе, и найдём второе неизвестное.
если х=5, то 25+y 2 =29
если х=-5, то 25+y 2 =29
Пары чисел (−5;−2), (−5;2), (5;−2) и (5;2) — решения системы.
Источник