2fe что это значит

Химические свойства железа и его соединений, их применение

Железо — восьмой элемент четвёртого периода в таблице Менделеева. Его номер в таблице (также его называют атомным) 26, что соответствует числу протонов в ядре и электронов в электронной оболочке. Обозначается первыми двумя буквами своего латинского эквивалента — Fe (лат. Ferrum — читается как «феррум»). Железо — второй по распространённости элемент в земной коре, процентное содержание — 4,65% (самый распространённый — алюминий, Al). В самородном виде данный металл встречается достаточно редко, чаще его добывают из смешанной руды с никелем.

Какова же природа данного соединения? Железо как атом состоит из металлической кристаллической решётки, за счёт чего обеспечивается твёрдость соединений, содержащих этот элемент, и молекулярная стойкость. Именно в связи с этим данный металл — типичное твёрдое тело в отличие, например, от ртути.

Железо как простое вещество — металл серебристого цвета c типичными для этой группы элементов свойствами: ковкость, металлический блеск и пластичность. Помимо этого, железо обладает высокой реакционной активностью. О последнем свойстве свидетельствует тот факт, что железо очень быстро подвергается коррозии при наличии высокой температуры и соответствующей влажности. В чистом кислороде этот металл хорошо горит, а если раскрошить его на очень мелкие частицы, то они будут не просто гореть, а самовозгораться.

Читайте также:  Что значит прыщ под носом справа

Зачастую железом мы называем не чистый металл, а его сплавы, содержащих углерод ©, например, сталь (&lt,2,14% C) и чугун (&gt,2,14% C). Также важное промышленное значение имеют сплавы, в которые добавляются легирующие металлы (никель, марганец, хром и другие), за счёт них сталь становится нержавеющей, т. е. легированной. Таким образом, исходя из этого становится понятным, какое обширное промышленное применение имеет этот металл.

Характеристика Fe

  • M (молярная масса) железа — 55, 872 а. е. м. В школьной химии это значение часто округляют: M (Fe) = 56 г/моль
  • Электронная конфигурация валентного уровня: 3d6 4s2. Это значит, что на четвёртом электронном s-уровне находятся 2 электрона, а на третьем d-уровне — 6. Соответственно, наиболее устойчивым состоянием, с химической точки зрения, является: изначальное (все электроны атома находятся на своих электронных орбиталях), промежуточное (два или три электрона с валентного уровня переходят на электронные орбитали окислителя), в этом случае электроны могут как бы «метаться», не зная оставаться ли им на орбитали железа или переходить на электронное облако окислителя, сильно окисленное (все электроны переходят на электронные орбитали окислителя)
  • Степени окисления железа: 0, +2, +3, +6
  • Температура плавления железа — 1812 K (1538,85 °C)
  • Температура кипения — 3134 K (2861 °C)

Химические свойства железа

Рассмотрим подробнее особенности этого элемента.

Свойства простого вещества

  • Окисление на воздухе при высокой влажности (коррозийный процесс):

4Fe+3O2+6H2O = 4Fe (OH)3 — гидроксид (гидроокись) железа (III)

  • Горение железной проволоки в кислороде с образованием смешанного оксида (в нём присутствует элемент и со степенью окисления +2, и со степенью окисления +3):

3Fe+2O2 = Fe3O4 (железная окалина). Реакция возможна при нагревании до 160 ⁰C.

  • Взаимодействие с водой при высокой температуре (600−700 ⁰C):
Читайте также:  Перечень бюро кредитных историй что это значит

а) Реакция с галогенами (Важно! При данном взаимодействии приобретает степень окисления элемента +3)

2Fe+3Cl2 = 2FeCl3 — хлорид трёхвалентного железа

2Fe+3Br2 = 2FeBr3 — бромид железа (III)

б) Реакция с серой (Важно! При данном взаимодействии элемент имеет степень окисления +2)

Сульфид железа (III) — Fe2S3 можно получить в ходе другой реакции:

в) Образование пирита

Fe+2S = FeS2 — пирит. Обратите внимание на степень окисления элементов, составляющих данное соединение: Fe (+2), S (-1).

  • Взаимодействие с солями металлов, стоящими в электрохимическом ряду активности металлов справа от Fe:

Fe+CuCl2 = FeCl2+Cu — хлорид железа (II)

  • Взаимодействие с разбавленными кислотами (например, соляной и серной):

Fe+HCl = FeCl2+ H2

Обратите внимание, что в этих реакция получается железо со степенью окисления +2.

  • В неразбавленных кислотах, которые являются сильнейшими окислителями, реакция возможна только при нагревании, в холодных кислотах металл пассивируется:

Fe+H2SO4 (концентрированная) = Fe2 (SO4)3+3SO2+6H2O

Fe+6HNO3 = Fe (NO3)3+3NO2+3H2O

  • Амфотерные свойства железа проявляются только при взаимодействии с концентрированными щелочами:

Fe+2KOH+2H2O = K2[Fe (OH)4]+H2 — тетрагидроксиферрат (II) калия выпадает в осадок.

Процесс производства чугуна в доменной печи

  • Обжиг и последующее разложение сульфидных и карбонатных руд (выделение оксидов металла):

FeS2 &gt, Fe2O3 (O2, 850 ⁰C, -SO2). Эта реакция также является первым этапом промышленного синтеза серной кислоты.

FeCO3 &gt, Fe2O3 (O2, 550−600 ⁰C, -CO2).

С (кокс)+O2 (возд.) &gt, CO2 (600−700 ⁰C)

CO2+С (кокс) &gt, 2CO (750−1000 ⁰C)

  • Восстановление руды, содержащий оксид, угарным газом:

Fe2O3 &gt, Fe3O4 (CO, -CO2)

Fe3O4 &gt, FeO (CO, -CO2)

FeO &gt, Fe (CO, -CO2)

  • Науглероживание железа (до 6,7%) и расплавление чугуна (t⁰плавления — 1145 ⁰C)

Fe (твёрдый)+С (кокс) &gt, чугун. Температура реакции — 900−1200 ⁰C.

В чугуне всегда присутствует в виде зёрен цементит (Fe2C) и графит.

Характеристика соединений, содержащих Fe

Изучим особенности каждого соединения отдельно.

Fe3O4

Смешанный или двойной оксид железа, имеющий в своём составе элемент со степенью окисления как +2, так и +3. Также Fe3O4 называют железной окалиной. Это соединение стойко переносит высокие температуры. Не вступает реакцию с водой, парами воды. Подвергается разложению минеральными кислотами. Может быть подвергнуто восстановлению водородом либо железом при высокой температуре. Как вы могли понять из вышеизложенной информации, является промежуточным продуктом в цепочке реакция промышленного производства чугуна.

Непосредственно же железную окалину применяют в производстве красок на минеральной основе, цветного цемента и изделий из керамики. Fe3O4 — это то, что получается при чернении и воронении стали. Получают смешанный оксид путём сгорания железа на воздухе (реакция приведена выше). Руда, содержащая оксиды, является магнетитом.

Fe2O3

Оксид железа (III), тривиальное название — красный железняк, соединение красно-коричневого цвета. Устойчиво к воздействию высоких температур. В чистом виде не образуется при окислении железа кислородом воздуха. Не вступает в реакцию с водой, образует гидраты, выпадающие в осадок. Плохо реагирует с разбавленными щелочами и кислотами. Может сплавляться с оксидами других металлов, образуя шпинели — двойные оксиды.

Красный железняк применяется в качестве сырья при промышленном получении чугуна доменным способом. Также ускоряет реакцию, то есть является катализатором, в аммиачной промышленности. Применяется в тех же областях, что и железная окалина. Плюс к этому использовался как носитель звука и картинки на магнитных лентах.

FeOH2

Гидроксид железа (II), соединение, обладающее как кислотными, так и основными свойствами, преобладают последние, то есть, является амфотерным. Вещество белого цвета, которое быстро окисляется на воздухе, «буреет», до гидроокиси железа (III). Подвержено распаду при воздействии температуры. Вступает в реакцию и со слабыми растворами кислот, и со щелочами. В воде не растворим. В реакции выступает в роли восстановителя. Является промежуточным продуктом в реакции коррозии.

Обнаружение ионов Fe2+ и Fe3+ («качественные» реакции)

Распознавание ионов Fe2+ и Fe3+ в водных растворах производят с помощью сложных комплексных соединений — K3[Fe (CN)6], красная кровяная соль, и K4[Fe (CN)6], жёлтая кровяная соль, соответственно. В обеих реакциях выпадает осадок насыщенного синего цвета с одинаковым количественным составом, но различным положением железа с валентностью +2 и +3. Этот осадок также часто называют берлинской лазурью или турнбуллевой синью.

Реакция, записанная в ионном виде

Fe2++K++[Fe (CN)6]3-  K+1Fe+2 [Fe+3 (CN)6]

Fe3++K++[Fe (CN)6]4-  K+1Fe+3 [Fe+2 (CN)6]

Хороший реактив для выявления Fe3+ тиоцианат-ион (NCS-)

Fe3++ NCS-  [Fe (NCS)6]3- эти соединения имеют ярко-красную («кровавую») окраску.

Этот реактив, например, тиоцианат калия (формула — KNCS), позволяет определить даже ничтожно малую концентрацию железа в растворах. Так, он способен при исследовании водопроводной воды определить, не заржавели ли трубы.

Источник

Как понять в реакции Fe 2+ или 3+?

Стандартные электродные потенциалы полуреакций:
Fe(2+) + 2e —> Fe, E = -0,441 B
Fe(3+) + 3e —> Fe, E = -0,036 B
Чем меньше значение Е, тем сильнее выражены восстановительные свойства (Например, натрий Na(+) + 1e —> Na, E = -2,714 B)

В нашем случае идёт реакция растворения железа в разных кислотах. Так, Fe в реакции восстановитель, значит кислота должна вступать окислителем, т. к. восстановления в системе без окисления не может быть.

Рассмотрим HCl. При диссоциации Н (+) и Cl(-) — окислителем здесь может быть только Н (+), т. к. Cl(-) больше не может принимать электроны.
СЭП полуреакции:
2H(+) + 2e —> H2, E = 0,000 B

ЭДС электрохимической реакции:
Fe + 2H(+) = Fe(2+) + H2
ЭДС = 0 + 0,441 = 0,441 В — реакция идёт

Fe + 3H(+) = Fe(3+) + 1.5H2
ЭДС = 0,036 В — реакция идёт

Сравниваем ЭДС и видим, что в первом случае он больше, чем во втором, значит мы в растворе будем предпочительно наблюдать Fe(2+), чем Fe(3+) который тоже образуется.

В серной кислоте если она разбавленная, то в ОВР участвует Н (+) частицы в основном, а когда концентрированная, то диссоциация Н (+) низкая, в кислоте в качестве окислителя выступает предпочтительно S(+6).
СЭП восстановления серной кислоты до SO2 не нашёл, но он значительно больше 0,00 В.
ЭДС реакции будет уже больше, чем 0,036 В (случай с водородом), поэтому весь на первое время полученный Fe(2+) переходит быстро в Fe(3+).

Поэтому когда в качестве окислителя выступает слабый окислитель, например H+ кислот, то пишут Fe(2+), а когда более сильный окислитель, например, H2SO4(конц.), KMnO4, HNO3 — уже Fe(3+).

Fe+2HCl(разб) =FeCl2+H2
Fe+2HCl(конц) =Fecl2+H2

Fe+H2SO4(разб) =FeSO4+H2
2Fe+6H2SO4(конц) =Fe2(SO4)3+3SO2+6H2O

Источник

Железо

Железо / Ferrum (Fe), 26

1,83 (шкала Полинга)

Fe←Fe 3+ −0,04 В
Fe←Fe 2+ −0,44 В

Термодинамические свойства простого вещества Плотность (при н. у.)

1812 K (1538.85 °C)

247,1 кДж/кг 13,8 кДж/моль

Кристаллическая решётка простого вещества Структура решётки

Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum ). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Простое вещество железо (CAS-номер: 7439-89-6) — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Собственно, железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.

В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре — 4,65 % (4-е место после O, Si, Al [2] ). Считается также, что железо составляет бо́льшую часть земного ядра.

Содержание

История

Железо, как инструментальный материал, известно с древнейших времён. Самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это изготовленные из метеоритного железа, то есть сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), украшения из египетских гробниц (около 3800 года до н. э.) и кинжал из шумерского города Ура (около 3100 года до н. э.). От небесного происхождения метеоритного железа происходит, видимо, одно из названий железа в греческом и латинском языках: «сидер» (что значит «звёздный»).

Изделия из железа, полученного выплавкой, известны со времени расселения арийских племён из Европы в Азию, острова Средиземного моря, и далее (конец 4-го и 3-е тысячелетие до н. э. [источник не указан 137 дней] ). Самые древние железные инструменты из известных — стальные лезвия, найденные в каменной кладке пирамиды Хеопса в Египте (построена около 2530 года до н. э. [источник не указан 137 дней] ). Как показали раскопки в Нубийской пустыне, уже в те времена египтяне, стараясь отделить добываемое золото от тяжёлого магнетитового песка, прокаливали руду с отрубями и подобными веществами, содержащими углерод. В результате на поверхности расплава золота всплывал слой тестообразного железа, который обрабатывали отдельно. Из этого железа ковались орудия, в том числе найденные в пирамиде Хеопса. Однако после внука Хеопса Менкаура (2471—2465 год до н. э.) в Египте наступила смута: знать во главе со жрецами бога Ра свергла правящую династию, и началась чехарда узурпаторов, закончившаяся воцарением фараона следующей династии Усеркара, которого жрецы объявили сыном и воплощением самого бога Ра (с тех пор это стало официальным статусом фараонов). В ходе этой смуты культурные и технические знания египтян пришли в упадок, и, так же как деградировало искусство строительства пирамид, технология производства железа была утеряна [источник не указан 137 дней] , вплоть до того, что позднее, осваивая в поисках медной руды Синайский полуостров, египтяне не обратили никакого внимания на имевшиеся там залежи железной руды, а получали железо от соседних хеттов и митаннийцев.

Первые освоили производства железа хатты, на это указывает древнейшее (2-е тысячелетие до н. э.) упоминание железа в текстах хеттов, основавших свою империю на территории хатттов (современной Анатолии в Турции). Так, в тексте хеттского царя Анитты (около 1800 года до н. э.) говорится:

В древности мастерами железных изделий слыли халибы. В легенде об аргонавтах (их поход в Колхиду состоялся примерно за 50 лет до троянской войны) рассказывается, что царь Колхиды Эет дал Ясону железный плуг чтобы он вспахал поле Ареса, и описываются его подданные халиберы:

Аристотель описал их способ получения стали: «халибы несколько раз промывали речной песок их страны — тем самым выделяя чёрный шлих (тяжелая фракция состоящая в основном из магнетита и гематита), и плавили в печах; полученный таким образом металл имел серебристый цвет и был нержавеющим».

В качестве сырья для выплавки стали использовались магнетитовые пески, которые часто встречаются по всему побережью Чёрного моря: эти магнетитовые пески состоят из смеси мелких зёрен магнетита, титано-магнетита или ильменита, и обломков других пород, так что выплавляемая халибами сталь была легированной, и имела превосходные свойства. Такой своеобразный способ получения железа говорит о том, что халибы лишь распространили железо как технологический материал, но их способ не мог быть методом повсеместного промышленного производства железных изделий. Однако их производство послужило толчком для дальнейшего развития металлургии железа.

Климент Александрийский в своём энциклопедическом труде «Строматы» упоминает, что по греческим преданиям железо (видимо, выплавка его из руды) было открыто на горе Иде — так называлась горная цепь возле Трои (в Илиаде она упоминается как гора Ида, с которой Зевс наблюдал за битвой греков с троянцами). Произошло это через 73 года после Девкалионова потопа, а этот потоп, согласно Паросской хронике, был в 1528 году до н. э., то есть метод выплавки железа из руды был открыт примерно в 1455 году до н. э. Однако из описания Климента не ясно, говорит ли он именно об этой горе в Передней Азии (Ида Фригийская у Вергилия), или же о горе Ида на острове Крит, о которой римский поэт Вергилий в Энеиде пишет как о прародине троянцев:

«Остров Юпитера, Крета, лежит средь широкого моря,
Нашего племени там колыбель, где высится Ида…»

Более вероятно, что Климент Александрийский говорит именно о фригийской Иде возле Трои, так как там были найдены древние железные копи и очаги железоделательного производства. Первое письменное свидетельство о железе имеется в глиняных табличках архива египетских фараонов Аменхотепа III и Эхнатона, и относится к тому же времени (1450—1400 год до н. э.). Там упоминается о выделке железа на юге Закавказья, которое греки называли Колхидой (и возможно, что слово «kolhidos» может быть модификацией слова «halibos») — а именно, что царь страны Митанни и властитель Армении и Южного Закавказья послал египетскому фараону Аменхотепу II «вместе с 318 наложницами кинжалы и кольца из хорошего железа». Такие же подарки фараонам дарили и хетты.

В самой глубокой древности железо ценилось дороже золота, и по описанию Страбона, у африканских племён за 1 фунт железа давали 10 фунтов золота, а по исследованиям историка Г. Арешяна стоимости меди, серебра, золота и железа у древних хеттов были в соотношении 1 : 160 : 1280 : 6400. В те времена железо использовалось как ювелирный металл, из него делали троны и другие регалии царской власти: например, в библейской книге Второзаконие 3,11 описан «одр железный» рефаимского царя Ога.

В гробнице Тутанхамона (около 1350 года до н. э.) был найден кинжал из железа в золотой оправе — возможно, подаренный хеттами в дипломатических целях. Но хетты не стремились к широкому распространению железа и его технологий, что видно и из дошедшей до нас переписки египетского фараона Тутанхамона и его тестя Хаттусиля — царя хеттов. Фараон просит прислать побольше железа, а царь хеттов уклончиво отвечает, что запасы железа иссякли, а кузнецы заняты на сельскохозяйственных работах, поэтому он не может выполнить просьбу царственного зятя, и посылает только один кинжал из «хорошего железа» (то есть стали). Как видно, хетты старались использовать свои знания для достижения военных преимуществ, и не давали другим возможности сравняться с ними. Видимо, поэтому железные изделия получили широкое распространение только после Троянской войны и падения державы хеттов, когда благодаря торговой активности греков технология железа стала известной многим, и были открыты новые месторождения железа и рудники. Так на смену «Бронзовому» веку настал век «Железный».

По описаниям Гомера, хотя во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно и пользовалось большим спросом, хотя больше как драгоценный металл. Например, в 23-й песне «Илиады» Гомер рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. Это железо ахейцы добывали у троянцев и сопредельных народов (Илиада 7,473), в том числе у халибов, которые воевали на стороне троянцев:

«Прочие мужи ахейские меной вино покупали,
Те за звенящую медь, за седое железо меняли,
Те за воловые кожи или волов круторогих,
Те за своих полоненых. И пир уготовлен веселый…»

Возможно, железо было одной из причин, побудивших греков-ахейцев двинуться в Малую Азию, где они узнали секреты его производства. А раскопки в Афинах показали, что уже около 1100 года до н. э. и позднее уже широко были распространены железные мечи, копья, топоры, и даже железные гвозди. В библейской книге Иисуса Навина 17,16 (ср. Судей 14,4) описывается, что филистимляне (библейские «PILISTIM», а это были протогреческие племена, родственные позднейшим эллинам, в основном пеласги) имели множество железных колесниц, то есть, в это время железо уже стало широко применяться в больших количествах.

Гомер в «Илиаде» и «Одиссее» называет железо «многотрудный металл», и описывает закалку орудий:

«Расторопный ковач, изготовив топор иль секиру,
В воду металл, раскаливши его, чтоб двойную
Он крепость имел, погружает…»

Гомер называет железо многотрудным, потому что в древности основным методом его получения был сыродутный процесс: перемежающиеся слои железной руды и древесного угля прокаливались в специальных печах (горнах — от древнего «Horn» — рог, труба, первоначально это была просто труба, вырытая в земле, обычно горизонтально в склоне оврага). В горне окислы железа восстанавливаются до металла раскалённым углём, который отбирает кислород, окисляясь до окиси углерода, и в результате такого прокаливания руды с углём получалось тестообразное кричное (губчатое) железо. Крицу очищали от шлаков ковкой, выдавливая примеси сильными ударами молота. Первые горны имели сравнительно низкую температуру — заметно меньше температуры плавления чугуна, поэтому железо получалось сравнительно малоуглеродистым. Чтобы получить крепкую сталь приходилось много раз прокаливать и проковывать железную крицу с углём, при этом поверхностный слой металла дополнительно насыщался углеродом и упрочнялся. Так получалось «хорошее железо» — и хотя это требовало больших трудов, изделия, полученные таким способом, были существенно более крепкими и твердыми, чем бронзовые.

В дальнейшем научились делать более эффективные печи (в русском языке — домна, домница) для производства стали, и применили меха для подачи воздуха в горн. Уже римляне умели доводить температуру в печи до плавления стали (около 1400 градусов, а чистое железо плавится при 1535 градусах). При этом образуется чугун с температурой плавления 1100—1200 градусов, очень хрупкий в твёрдом состоянии (даже не поддающийся ковке) и не обладающий упругостью стали. Первоначально его считали вредным побочным продуктом (англ. pig iron , по-русски, свинское железо, чушки, откуда, собственно, и происходит слово чугун), но потом обнаружилось, что при повторной переплавке в печи с усиленным продуванием через него воздуха, чугун превращается в сталь хорошего качества, так как лишний углерод выгорает. Такой двухстадийный процесс производства стали из чугуна оказался более простым и выгодным, чем кричный, и этот принцип используется без особых изменений многие века, оставаясь и до наших дней основным способом производства железных материалов.

Библиография: Карл Бакс. Богатства земных недр. М.: Прогресс, 1986, стр. 244, глава «Железо»

Происхождение названия

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза , укр. залізо , ст.-слав. желѣзо , болг. желязо , сербохорв. жељезо , польск. żelazo , чеш. železo , словен. železo ).

Одна из этимологий связывает праслав. *želězo с греческим словом χαλκός, что означало железо и медь, согласно другой версии *želězo родственно словам *žely «черепаха» и *glazъ «скала», с общей семой «камень» [3] [4] . Третья версия предполагает древнее заимствование из неизвестного языка [5] .

Романские языки (итал. ferro , фр. fer , исп. hierro , порт. ferro , рум. fier ) продолжают лат. ferrum . Латинское ferrum ( barzel ‎, шумерск. barzal, ассирийск. parzilla [6] .

Германские языки заимствовали название железа (готск. eisarn , англ. iron , нем. Eisen , нидерл. ijzer , дат. jern , швед. järn ) из кельтских [7] .

Пракельтское слово *isarno- (> др.-ирл. iarn, др.-брет. hoiarn), вероятно, восходит к пра-и.е. *h1esh2r-no- «кровавый» с семантическим развитием «кровавый» > «красный» > «железо». Согласно другой гипотезе данное слово восходит к пра-и.е. *(H)ish2ro- «сильный, святой, обладающий сверхъестественной силой» [8] .

Древнегреческое слово σίδηρος , возможно, было заимствовано из того же источника, что и славянское, германское и балтийское слова для серебра [9] .

Название природного карбоната железа (сидерита) происходит от лат. sidereus — звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

Изотопы

Природное железо состоит из четырёх стабильных изотопов: 54 Fe (изотопная распространённость 5,845 %), 56 Fe (91,754 %), 57 Fe (2,119 %) и 58 Fe (0,282 %). Так же известно более 20 нестабильных изотопов железа с массовыми числами от 45 до 72, наиболее устойчивые из которых — 60 Fe (период полураспада по уточнённым в 2009 году данным составляет 2,6 миллиона лет [10] ), 55 Fe (2,737 года), 59 Fe (44,495 суток) и 52 Fe (8,275 часа); остальные изотопы имеют период полураспада менее 10 минут [11] .

Изотоп железа 56 Fe относится к наиболее стабильным ядрам: все следующие элементы могут уменьшить энергию связи на нуклон путём распада, а все предыдущие элементы, в принципе, могли бы уменьшить энергию связи на нуклон за счёт синтеза. Полагают, что железом оканчивается ряд синтеза элементов в ядрах нормальных звёзд (см. Железная звезда), а все последующие элементы могут образоваться только в результате взрывов сверхновых [12] .

Геохимия железа

Железо — один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию. При этом в ядре находится около 86 % всего железа, а в мантии 14 %. Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002—0,02 мг/л. В речной воде несколько выше — 2 мг/л.

Геохимические свойства железа

Важнейшая геохимическая особенность железа — наличие у него нескольких степеней окисления. Железо в нейтральной форме — металлическое — слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO — основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.

По кристаллохимическим свойствам ион Fe 2+ близок к ионам Mg 2+ и Ca 2+ — другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe3(PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.

В природе также широко распространены сульфиды железа — пирит FeS2 (серный или железный колчедан) и пирротин. Они не являются железной рудой — пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

По запасам железных руд Россия занимает первое место в мире. Содержание железа в морской воде — 1·10 −5 —1·10 −8 %.

Другие часто встречающиеся минералы железа [13] :

  • Сидерит — FeCO3 — содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом. Плотность равна 3 г/см³ и твёрдость 3,5—4,5 по шкале Мооса.
  • Марказит — FeS2 — содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов с плотностью 4,6—4,9 г/см³ и твёрдостью 5—6 по шкале Мооса.
  • Лёллингит — FeAs2 — содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов. Плотность равна 7—7,4 г/см³, твёрдость 5—5,5 по шкале Мооса.
  • Миспикель — FeAsS — содержит 34,3 % железа. Встречается в виде белых моноклинных призм с плотностью 5,6—6,2 г/см³ и твёрдостью 5,5—6 по шкале Мооса.
  • Мелантерит — FeSO4·7H2O — реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие. Плотность равна 1,8—1,9 г/см³.
  • Вивианит — Fe3(PO4)2·8H2O — встречается в виде сине-серых или зелено-серых моноклинных кристаллов с плотностью 2,95 г/см³ и твёрдостью 1,5—2 по шкале Мооса.

Помимо вышеописанных минералов железа существуют, например:

  • ильменит — FeTiO3
  • магномагнетит — (Fe, Mg)[Fe2O4]
  • фиброферрит — FeSO4(OH)·4,5H2O
  • ярозит — KFe3(SO4)2(OH)6
  • кокимбит — Fe2(SO4)3·9H2O
  • рёмерит — Fe 2+ Fe 3+ 2(SO4)4·14H2O
  • графтонит — (Fe, Mn)3(PO4)2
  • скородит — Fe 3+ AsO4·2H2O
  • штренгит — FePO4·2H2O
  • фаялит — Fe2SiO4
  • альмандин — Fe3Al2[SiO4]3
  • андрадит — Ca3Fe2[SiO4]3
  • гиперстен — (Fe, Mg)2[Si2O6]
  • геденбергит — (Ca, Fe)[Si2O6]
  • эгирин — (Na, Fe)[Si2O6]
  • шамозит — Fe 2+ 4Al[AlSi3O10](OH)6·nH2O
  • нонтронит — (Fe 3+ , Al)2[Si4O10](OH)2·nH2O

Основные месторождения

По данным Геологической службы США (оценка 2011 г.), мировые разведанные запасы железной руды составляют порядка 178 млрд тонн. [14] Основные месторождения железа находятся в Бразилии (1 место), Австралии, США, Канаде, Швеции, Венесуэле, Либерии, Украине, Франции, Индии. В России железо добывается на Курской магнитной аномалии (КМА), Кольском полуострове, в Карелии и в Сибири. Значительную роль в последнее время приобретают донные океанские месторождения, в которых железо совместно с марганцем и другими ценными металлами находится в конкрециях [источник не указан 801 день] .

Получение

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод в виде кокса окисляется до монооксида углерода. Данный оксид образуется при горении в недостатке кислорода:

В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III):

Флюс добавляется для избавления от нежелательных примесей (в первую очередь от силикатов; например, кварц) в добываемой руде. Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Для устранения других примесей используют другие флюсы.

Действие флюса (в данном случае карбонат кальция) заключается в том, что при его нагревании он разлагается до его оксида:

Оксид кальция соединяется с диоксидом кремния, образуя шлак — метасиликат кальция:

1000^\circ C> \ CaSiO_3>» border=»0″/>

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности — это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишки углерода и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо:

,

при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей.

Физические свойства

Железо — типичный металл, в свободном состоянии — серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности — углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» — группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.

Для железа характерен полиморфизм, он имеет четыре кристаллические модификации:

  • до 769 °C существует α-Fe (феррит) с объёмноцентрированной кубической решёткой и свойствами ферромагнетика (769 °C ≈ 1043 K — точка Кюри для железа)
  • в температурном интервале 769—917 °C существует β-Fe, который отличается от α-Fe только параметрами объёмноцентрированной кубической решётки и магнитными свойствами парамагнетика
  • в температурном интервале 917—1394 °C существует γ-Fe (аустенит) с гранецентрированной кубической решёткой
  • выше 1394 °C устойчиво δ-Fe с объёмоцентрированной кубической решёткой

Металловедение не выделяет β-Fe как отдельную фазу [15] , и рассматривает её как разновидность α-Fe. При нагреве железа или стали выше точки Кюри (769 °C ≈ 1043 K) тепловое движение ионов расстраивает ориентацию спиновых магнитных моментов электронов, ферромагнетик становится парамагнетиком — происходит фазовый переход второго рода, но фазового перехода первого рода с изменением основных физических параметров кристаллов не происходит.

Для чистого железа при нормальном давлении, с точки зрения металловедения, существуют следующие устойчивые модификации:

  • От абсолютного нуля до 910 °C устойчива α-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой.
  • От 910 до 1400 °C устойчива γ-модификация с гранецентрированной кубической (ГЦК) кристаллической решёткой.
  • От 1400 до 1539 °C устойчива δ-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой.

Наличие в стали углерода и легирующих элементов существенным образом изменяет температуры фазовых переходов (см. фазовую диаграмму железо — углерод). Твёрдый раствор углерода в α- и δ-железе называется ферритом. Иногда различают высокотемпературный δ-феррит и низкотемпературный α-феррит (или просто феррит), хотя их атомные структуры одинаковы. Твёрдый раствор углерода в γ-железе называется аустенитом.

  • В области высоких давлений (свыше 13 ГПа, 128,3 тыс. атм. [16] ) возникает модификация ε-железа с гексагональной плотноупакованной (ГПУ) решёткой.

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря α—γ переходам кристаллической решётки происходит термообработка стали. Без этого явления железо как основа стали не получило бы такого широкого применения.

Железо относится к умеренно тугоплавким металлом. В ряду стандартных электродных потенциалов железо стоит до водорода и легко реагирует с разбавленными кислотами. Таким образом, железо относится к металлам средней активности.

Температура плавления железа 1539 °C, температура кипения — 2862 °C.

Химические свойства

Характерные степени окисления

Степень окисления Оксид Гидроксид Характер Примечания
+2 FeO Fe(OH)2 Слабоосновный
+3 Fe2O3 Fe(OH)3 Очень слабое основание, иногда — амфотерный
+6 Не получен * Кислотный Сильный окислитель
  • Кислота в свободном виде не существует — получены только её соли.

Для железа характерны степени окисления железа — +2 и +3.

Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH)2. Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) — слабый восстановитель.

Степени окисления +3 соответствуют красно-коричневый оксид Fe2O3 и коричневый гидроксид Fe(OH)3. Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe 3+ нацело гидролизуются даже в кислой среде. Fe(OH)3 растворяется (и то не полностью), только в концентрированных щелочах. Fe2O3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли кислоты несуществующей в свободном виде кислоты HFeO2):

Железо (+3) чаще всего проявляет слабые окислительные свойства.

Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.

Кроме того, существует оксид Fe3O4, формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe +2 (Fe +3 O2)2.

Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли — ферраты (например, K2FeO4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.

Свойства простого вещества

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe2O3·xH2O.

С кислородом железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe3O4, при сгорании в чистом кислороде — оксид Fe2O3. Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeO. При нагревании порошка серы и железа образуется сульфид, приближённую формулу которого можно записать как FeS.

При нагревании железо реагирует с галогенами. Так как FeF3 нелетуч, железо устойчиво к действию фтора до температуры 200—300 °C. В хлоре железо горит (при температуре около 200 °C), при этом образуется коричневый летучий димер Fe2Cl6. Если взаимодействие железа и брома протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr3. При нагревании FeCl3 и, особенно, FeBr3 отщепляют галоген и превращаются в галогениды железа(II). При взаимодействии железа и иода образуется иодид Fe3I8.

При нагревании железо реагирует с азотом, образуя нитрид железа Fe3N, с фосфором, образуя фосфиды FeP, Fe2P и Fe3P, с углеродом, образуя карбид Fe3C, с кремнием, образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с оксидом углерода(II) CO, причём образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава (η 5 -C5H5)2Fe.

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа(II):

При взаимодействии железа с приблизительно 70%-й серной кислотой при нагревании реакция протекает с образованием сульфата железа(III):

Соединения железа (II)

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):

Из солей железа(II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2·6Н2O.

Реактивом на ионы Fe 2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe 2+ и [Fe(CN)6] 3− выпадает осадок турнбулевой сини:

Для количественного определения железа (II) в растворе используют фенантролин Phen, образующий с железом (II) красный комплекс FePhen3 (максимум светопоглощения — 520 нм) в широком диапазоне рН (4-9) [17] .

Соединения железа (III)

Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами:

Соли Fe 3+ склонны к образованию кристаллогидратов. В них ион Fe 3+ как правило окружен шестью молекулами воды. Такие соли имеют розовый или фиолетовый цвет.

Ион Fe 3+ полностью гидролизуется даже в кислой среде. При рН>4 этот ион практчиески полностью осаждается [18] в виде Fe(OH)3:

При частичном гидролизе иона Fe 3+ образуются многоядерные оксо- и гидроксокатионы, из-за чего растворы приобретают коричневый цвет.

Основные свойства гидроксида железа(III) Fe(OH)3 выражены очень слабо. Он способен реагировать только с концентрированными растворами щелочей:

Образующиеся при этом гидроксокомплексы железа(III) устойчивы только в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.

При сплавлении со щелочами и оксидами других металлов Fe2O3 образует разнообразные ферриты:

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 — железокалиевые квасцы, (NH4)Fe(SO4)2 — железоаммонийные квасцы и т. д.

Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами SCN − . При взаимодействии ионов Fe 3+ с анионами SCN − образуется смесь ярко-красных роданидных комплексов железа [Fe(SCN)] 2+ , [Fe(SCN)2] + , Fe(SCN)3, [Fe(SCN)4]. [19] Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.

Другим качественным реактивом на ионы Fe 3+ служит гексацианоферрат(II) калия K4[Fe(CN)6] (жёлтая кровяная соль). При взаимодействии ионов Fe 3+ и [Fe(CN)6] 4− выпадает ярко-синий осадок берлинской лазури:

Соединения железа (VI)

Ферраты — соли не существующей в свободном виде железной кислоты H2FeO4. Это соединения фиолетового цвета, по окислительным свойствам напоминающие перманганаты, а по растворимости — сульфаты. Получают ферраты при действии газообразного хлора или озона на взвесь Fe(OH)3 в щелочи [20] , например, феррат(VI) калия K2FeO4. Ферраты окрашены в фиолетовый цвет.

Ферраты также можно получить электролизом 30%-ного раствора щелочи на железном аноде:

Ферраты — сильные окислители. В кислой среде разлагаются с выделением кислорода: [21] :

Окислительные свойства ферратов используют для обеззараживания воды.

Соединения железа VII и VIII

Имеются сообщения об электрохимическом получении соединений железа(VIII). [22] , [23] , [24] , однако независимых работ, подтверждающих эти результаты, нет.

Применение

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.

  • Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов.
  • Железо может входить в состав сплавов на основе других металлов — например, никелевых.
  • Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
  • Ультрадисперсный порошок магнетита используется во многих черно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
  • Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
  • Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
  • Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
  • Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
  • Водные растворы хлоридовдвухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Биологическое значение железа

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 78 % [источник не указан 522 дня] являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Обычно железо входит в ферменты в виде комплекса, называемого гемом. В частности, этот комплекс присутствует в гемоглобине — важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.

Неорганические соединения железа встречаются в некоторых бактериях, иногда используется ими для связывания азота воздуха.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа — был потерян «лишний» ноль после запятой).

Суточная потребность человека в железе следующая [25] : дети — от 4 до 18 мг, взрослые мужчины — 10 мг, взрослые женщины — 18 мг, беременные женщины во второй половине беременности — 33 мг. У женщин потребность несколько выше, чем у мужчин. Как правило, железа, поступающего с пищей, вполне достаточно, но в некоторых специальных случаях (анемия, а также при донорстве крови) необходимо применять железосодержащие препараты и пищевые добавки (гематоген, ферроплекс). Суточная потребность в железе мала и её легко удовлетворить. Однако у ребенка, которого кормят грудью, нередко возникает дефицит железа. В организме легко восстанавливается равновесие между поступлением и выведением железа, и временный дефицит его легко восполняется за счет имеющихся запасов. Потребность в железе значительно возрастает при анемии, вызванной, например, такими паразитарными инвазиями, как малярия и анкилостомоз, которые очень широко распространены в тропических странах.

Содержание железа в воде больше 1—2 мг/л значительно ухудшает её органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования, вызывает у человека аллергические реакции, может стать причиной болезни крови и печени (гемохроматоз). ПДК железа в воде 0,3 мг/л.

Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

Источник

Оцените статью